Physics, asked by alizaaish864, 8 months ago

find a vector whose magnitude is 12 and which is perpendicular to each of the vectors, A=2i^+3j^-2k^ and B=6i^+5j^-2k^​

Answers

Answered by Anonymous
124

Answer

Given -

\bf \vec{A} = 2\hat{\imath} + 3\hat{\jmath} - 2\hat{k}

\bf \vec{B} = 6\hat{\imath} + 5\hat{\jmath} - 2\hat{k}

━━━━━━━━━━━━━

To find -

A Vector whose magnitude is 12 and is perpendicular to both the vectors \bf \vec{C}

\bf \pink{\vec{C} =  \dfrac{ 12 ( \vec{A} \times \vec{B})}{(| \vec{A} \times \vec{B} |) }}

━━━━━━━━━━━━

Solution -

The cross product of two vectors \bf \vec{A} and \bf \vec{B} gives a vector perpendicular to both the vector.

━━━━━━━━━━━━━

Cross Product of A and B = \bf \vec{A} \times \vec{B} =

\left[\begin{array}{ccc}\hat{\imath}&\hat{\jmath}&\hat{k}\\\bf a_x&\bf a_y&\bf a_z\\\bf b_x&\bf b_y& \bf b_z\end{array}\right] =

\left[\begin{array}{ccc}\hat{\imath}&\hat{\jmath}&\hat{k}\\\bf 2&\bf 3&\bf  -2\\\bf 6&\bf 5& \bf - 2\end{array}\right]

\bf \vec{A} \times \vec{B} =  [ 3 \times ( - 2) - 5 \times ( - 2)] \hat{\imath} - [2 \times (- 2) - 6 \times ( - 2) ]\hat{\jmath}+ (2 \times 5) -( 6 \times 3)]\hat{k}

\bf = ( - 6 + 10)\hat{\imath} - ( - 4 + 12) \hat{\jmath} + (10 - 18) \hat{k}

\bf =  4\hat{\imath} - 8\hat{\jmath} - 8\hat{k}

━━━━━━━━━━━━━

\bf\red{ \vec{A} \times \vec{B} = 4\hat{\imath} - 8\hat{\jmath} - 8\hat{k}}

━━━━━━━━━━━━━

Magnitude of \bf \vec{A} \times \vec{B}

\bf = \sqrt{4^2 + 8 ^2 + 8^2 }

\bf = \sqrt{64 + 64 + 16}

\bf = \sqrt{144}

\bf = 12

━━━━━━━━━━━━━

\bf \vec{C} =  \dfrac{ 12 ( \vec{A} \times \vec{B})}{(| \vec{A} \times \vec{B} |) }

\bf = \dfrac{ 12 ( 4\hat{\imath} - 8\hat{\jmath} - 8\hat{k})}{12}

\bf = 4\hat{\imath} - 8\hat{\jmath} - 8\hat{k}

━━━━━━━━━━━━━

A Vector whose magnitude is 12 and is perpendicular to both the vectors \bf\pink{ 4\hat{\imath} - 8\hat{\jmath} - 8\hat{k}} .

━━━━━━━━━━━━━

Similar questions