Math, asked by ritikkumar15jan, 7 months ago

find: a³-1/a³ , if a-1/a= 4​

Answers

Answered by 2020himanshuthakur
1

Answer:

76

a  -  \frac{1}{a} = 4 \\  \\ a {}^{3}  -  \frac{1}{ {a}^{3} }  = (a -  \frac{1}{a} )((a {}^{2} ) + (\frac{1}{a} ) {}^{2}  + a \times  \frac{1}{a} ) \\ a {}^{3}  -  \frac{1}{ {a}^{3} }   = 4  \times ( {a}^{2}  +  \frac{1}{ {a}^{2} }  + 1) \\  a {}^{3}  -  \frac{1}{ {a}^{3} }   = 4  \times ( {a}^{2}  +  \frac{1}{ {a}^{2} }  + 1   - 2 + 2) \\  a {}^{3}  -  \frac{1}{ {a}^{3} }   = 4  \times ( ({a}^{2}  +  \frac{1}{ {a}^{2} }   - 2)  + 3) \\  a {}^{3}  -  \frac{1}{ {a}^{3} }   = 4  \times ( (  a -  \frac{1}{a}) {}^{2}   + 3) \\  a {}^{3}  -  \frac{1}{ {a}^{3} }   = 4  \times (4 {}^{2}  + 3) \\  = 4 \times 19 = 76

Answered by shababahmmed786
2

Step-by-step explanation:

a-1/a=4

Square on both sides

(a-1/a)²=4²

a²+1/a²-2a./a=16

a²+1/a²-2=16

Aa²+1/a²=14

a³-b³=(a-b) (a²+b²+ab)

Using this formula we get

a³-1/a³=(a-1/a) (a²+1/a²+a. 1/a)

=4 (14+1)

=4*15=60

Similar questions