Math, asked by vignesh140760, 18 days ago

Find a³ + b³ + c³-3abc. If a=87,6=126, C = 39

Answers

Answered by Anagh7678
1

Answer:

Zero

Step-by-step explanation:

We've formula,

a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)

If a+b+c=0

then, a^3 + b^3 + c^3 - 3abc = (0) (a^2 + b^2 + c^2 - ab - bc - ca)

i.e, a^3 + b^3 + c^3 - 3abc = 0

Here, Given:- a=87, b=-126, c=39

a+b+c = 87+(-126)+39 = 87-126+39 = 0

So, a^3 + b^3 + c^3 - 3abc = 0

Hence, the value of the expression a^3 + b^3 + c^3 - 3abc is equal to zero

Similar questions