Physics, asked by DEVIKAROY, 9 months ago

find absolute error, mean absolute error, percentage error of 2.63,2.56,2.42,2.71,2.80​

Answers

Answered by Anonymous
28

 \huge{ \blue{ \underline{ \underline{ \purple{ \rm{Solution : }}}}}}

First, we have to find the true value i.e., actual value . It is the mean of all these values given :

 \blue{ \bf{a_i}}

• 2.63

• 2.56

• 2.42

• 2.71

• 2.80

Here,  \sf{a_i} denotes measured (experimental) value. "i" is varying from 1 to 5.

The arithmetic mean,  \sf{ \overline{ a}} of period of oscillations, given as :

 \blue{ \sf{ \overline{a} = { \sum^{n}_{i =1}} \: a_i}}

 \blue{ \sf = { \frac { 2.63 + 2.56  + 2.42 + 2.71 + 2.80} {5}}}

 \blue{ \sf =  \frac{13.12}{5} = 2.62}

 \green{ \underline{ \boxed{ = 2.62 \: s{ \rm{ \small{ \: (approx)}}}}}}

Now we will find errors from this true value (Arithmetic mean). Every measured value, we will subtract from a true value. Then, we find   \sf{\Delta {a_i}} i.e., Absolute Error.

Refer the attachment ⛈

In absolute error both negative ( - ) and positive ( + ) values are there, which means absolute errors can be positive or negative.

Now, we have to find mean absolute error.

 \blue{ \sf{ \overline { \Delta{a_i}} =  \frac{1} {n}  {\sum^{n}_{i = 1}}   \: |{\Delta{a_i}|}}}

 \blue{ \sf = { \frac {0.01 + 0.06 + 0.20 + 0.09 + 0.18} {5}}}

 \green{ \underline{ \boxed{ \purple{ = 0.108 \: s \approx{0.11 \: s}}}}}

Note,

 \sf{{\Delta{a_i}  \: {\rightarrow \: {Absolute \: Error}}}}

  \sf{ \overline{\Delta{a_i}} \:  {\rightarrow \: Mean \: Absolute \: Error}}

Here, we have taken only values, not signs. Hence, mean absolute error concentrates on magnitude not sign.....

Now, let's find out percentage error

 \blue{ \sf{Percentage \: error =  \frac {Mean \: Absolute \: error}{Actual \: value} \times 100 }}

 \blue{ \sf{ =  \frac{0.11}{2.6}  \times 100  }}

 \green{ \underline{ \boxed{ \purple{ \sf{ = 4\%}}}}}

Attachments:
Similar questions