Math, asked by roshan01092003, 4 months ago

find absolute maximum and absolute minimum of the function f(x)=3x^4-4x^3 on the (-1,2)​

Answers

Answered by amansharma264
17

EXPLANATION.

Absolute maximum and absolute minimum of the function,

⇒ f(x) = 3x⁴ - 4x³ on the line x∈(-1,2).

Differentiate the function w.r.t x, we get.

⇒ dy/dx = d(3x⁴ - 4x³)/dx.

⇒ dy/dx = 12x³ - 12x².

Put f'(x) = 0 in equation, we get.

⇒ 12x³ - 12x² = 0.

⇒ 12x²(x - 1) = 0.

⇒ x = 1.

⇒ f'(x) = 1.

Put the value of x of Range.

Put x = -1 in equation, we get.

⇒ f(-1) = 3(-1)⁴ - 4(-1)³.

⇒ f(-1) = 3 + 4.

⇒ f(-1) = 7.

Put x = 2 in equation, we get.

⇒ f(2) = 3(2)⁴ - 4(2)³.

⇒ f(2) = 3(16) - 4(8).

⇒ f(2) = 48 - 32.

⇒ f(2) = 16.

Put x = 1 in equation, we get.

⇒ f(1) = 3(1)⁴ - 4(1)³.

⇒ f(1) = 3 - 4.

⇒ f(1) = -1.

Maximum value of f(x) = 16.

Minimum value of f(x) = -1.

                                                                                           

MORE INFORMATION.

How to find local maxima or minima.

Step - 1 : = put f'(x) = 0 solve for values of x, let x = x₁, x₂,....

Step - 2: = Let x = x₁ is now checking for local maxima and minima and calculate: f'(x₁ - h)  and  f'(x₁ + h).

Step - 3: = If h > 0 and h is very very small then,

(1) = f'(x₁ - h) < 0  and  f'(x₁ + h) > 0 then x₁ is point of minimum.

(2) = if f'(x₁ - h) > 0  and  f'(x₁ + h) < 0 then x₁ is point of maximum.

(3) = if f'(x₁ - h) & f'(x₁ + h) has same sign then x₁ is neither point of maximum nor point of minimum.

In the same way other values of x = x₂, x₃ are checked separately.


Anonymous: Niceee as always ❤ :cute smile:
Anonymous: Impressive! :)
Answered by BrainlyEmpire
443

✯ Appropriate Question ✯

  • find absolute maximum and absolute minimum of the function f(x)=3x^4-4x^3 on the (-1,2)

✯ Solution ✯

  • To decide on the extrema, check for maximums & minimums and compare them to the values at the endpoints.

  • First, take the derivative to find the critical points (places of possible maximums and minimums):

  • f'(x) = 12x3 - 12x2 = 12x2(x - 1)

  • f'(x) = 0 when x = 0 or x = 1.

☯ Check the critical points against the end points:

  • f(-1) = 7   (end point)

  • f(0) = 0    (critical point)

  • f(1) = -1   (critical point)

  • f(2) = 16   (end point)

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

The absolute minimum is at x = 1 ✔

the absolute maximum is at x = 2 ✔

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃


thanksaya: Perfect,✔
clalc: Good :)
Anonymous: Adorable ^^
BrainlyEmpire: Thanks :D to all
BawliBalika: Good :)
Similar questions