Physics, asked by Meghacutiepie, 11 months ago

find acceleration (m/sec²) of the body when speed changes from 20 km/hr to 30 km/hr in 10 secs.​

Answers

Answered by AdorableMe
5

GIVEN :-

  • Initial velocity(u) = 20 km/h
  • Final velocity(v) = 30 km/h
  • Time(t) = 10 s

TO FIND :-

The acceleration of the body in m/s².

FORMULA TO BE USED :-

v = u + at

SOLUTION :-

u = 20 km/h

⇒u = 20 * (5/18)

⇒u = 100/18

⇒u = 5.56 m/s

\rule{130}{2}

v = 30 km/h

⇒v = 30 * (5/18)

⇒v = 150/18

⇒v = 8.34 m/s

\rule{130}{2}

Now,

v = u + at

⇒a = (v - u)/t

Putting the known values :-

⇒a = (8.34 - 5.56)/10

⇒a = 2.78/10

⇒a = 0.278 m/s²             ---- Answer!

Answered by Anonymous
4

Answer:

\frac{5}{18} \ m/s^{2}

Explanation:

Given:

Initial velocity = u = 20 \  km/hr

20 km/hr = 20 \times \frac{5}{18} = \frac{50}{9} m/s

Final velocity = v = 30 km/hr

30 km/hr = 30 \times \frac{5}{18} = \frac{25}{3} m/s

Time = t = 10 seconds

To find:

Acceleration

Acceleration = \frac{v-u}{t}

Where:

v = final velocity

u = initial veloity

t = time

Acceleration = \frac{\frac{25}{3}-\frac{50}{9}  }{10}

Acceleration = \frac{\frac{75}{9}-\frac{50}{9}  }{10}

Acceleration = \frac{\frac{25}{9}}{10}

Acceleration = \frac{25}{9} \times \frac{1}{10}

Acceleration = \frac{5}{18} \ m/s^{2}

The acceleration of the body is equal to \frac{5}{18} \ m/s^{2}

Similar questions