Math, asked by ak5049915, 8 months ago

find acute angle between the pair of straight line in which the first value of y=(2-√3)x+4 and another value is y=(2+√3)x-7​

Answers

Answered by amansharma264
5

EXPLANATION.

→ pair of straight line in which the first value

of y = ( 2 - √3 )x + 4 and another value is

y = ( 2 + √3 )x - 7

→ slope of line → y = Mx + c

→ M¹ = ( 2 - √3)

→ M² = ( 2 + √3 )

 \sf :  \implies \:  \tan( \theta) =  | \dfrac{ m_{1} -  m_{2}  }{1 +  m_{1} m_{2} } |   \\  \\  \sf :  \implies \:  \tan( \theta)  =  | \frac{(2 -  \sqrt{3}) - (2 +  \sqrt{3}  )}{1 + (2 -  \sqrt{3})(2 +  \sqrt{3})  } | \\  \\  \sf :  \implies \:  \tan( \theta) \:  =  | \frac{2 -  \sqrt{3}  - 2 -  \sqrt{3} }{1 + ( {2}^{2}  -  \sqrt{3} {}^{2} ) } | \\  \\  \sf :  \implies \:  \tan( \theta) \:  =   \:  | \frac{ - 2 \sqrt{3} }{1 + (4 - 3)} |  \\  \\ \sf :  \implies \:  \tan( \theta) \:  =  | \frac{ - 2 \sqrt{3} }{2} |

\sf :  \implies \:  \tan( \theta)  =  | -  \sqrt{3} |   \\  \\ \sf :  \implies \:  \tan( \theta) =  \sqrt{3}  \\  \\ \sf :  \implies \:  ( \theta) \:  = 60 \degree

Similar questions