Math, asked by dhanuofficial506, 1 day ago

Find acute angle Q between lines 4x² + 5xy + y2 = 0 ?​

Answers

Answered by chandan454380
0

Answer:

The answer is \tan^{-1}\frac{3}{4}=37^\circ

Step-by-step explanation:

Given lines can be separated as :

4x^2+5xy+y^2=0\\\Rightarrow (4x^2+4xy)+(xy+y^2)=0\\\Rightarrow 4x(x+y)+y(x+y)=0\\\Rightarrow (x+y)(4x+y)=0

\Rightarrow x+y=0, 4x+y=0

So slopes of these lines are m_1=-1,m_2=-4

Let \theta be the acute angle between these lines , then

                  \tan\theta=|\frac{m_1-m_2}{1+m_1m_2}|=\frac{-1+4}{1+4}=\frac{3}{4}\\\Rightarrow \theta=\tan^{-1}\frac{3}{4}=37^\circ

Similar questions