Find acute angles A and B, if and cos (A+4B)=0, A>B.
Answers
Answered by
4
SOLUTION:
Given : sin (A+ 2B) = √3/2 and cos (A + 4B) = 0
LHS = sin(A + 2B) = √3/2
sin(A + 2B) = sin 60°
[sin 60° = √3/2]
A + 2B = 60° ………………(1)
RHS = Cos(A + 4B) = 0
Cos(A + 4B) = Cos 90°
A + 4B = 90°……………….( 2)
On subtracting eq 1 & 2
A + 2B = 60°
A + 4B = 90°
(-) (-) (-)
--------------------
-2B = - 30°
2B = 30°
B = 30°/2
B = 15°
On putting the value of B in eq 2
A + 4B = 90°
A + 4×15° = 90°
A + 60° = 90°
A = 90° – 60°
A = 30°
Hence, the value of A = 30∘ and B = 15∘
HOPE THIS ANSWER WILL HELP YOU…
Answered by
5
(a)• Sin 60°= √3/2
(b)• Cos 90° = 0
Given,
Sin (A+B) = √3/2
From (a)
Sin(A+B) = Sin 60°
=> A + B = 60°
------------------------------Eq.(1)
Now,
Cos(A+4B) = 0
From (b)
Cos(A+4B) = Cos 90°
=> A + 4B = 90°
------------------------------Eq.(2)
Do Eq.(2) - Eq.(1):
• A + 4B = 90°
• A + B = 60°
---------------------
-……-……=-……
=> 3B = 30°
=> B = 10°
From (1) :
A + B = 60
=> A = 60 - B = 60 - 10 = 50°
•°• A = 50° & B = 10° are the Required Angles
Similar questions