Math, asked by AhmadAbdullah1, 15 days ago

Find all integers a so that the area enclosed by the lines y = ax, y = 0, and x + 2y - 4 = 0 is a natural number. (Solve without using integrals)

Answers

Answered by shadowsabers03
11

The area enclosed by the lines,

  • \small\text{$y=ax\quad\quad\dots(1)$}
  • \small\text{$y=0\quad\quad\dots(2)$}
  • \small\text{$x+2y-4=0\quad\quad\dots(3)$}

is a triangle. First let us find the vertices of the triangle.

Solving (1) and (2) we get the vertex,

  • \small\text{$A(0,\ 0)$}

Solving (2) and (3) we get the vertex,

  • \small\text{$B(4,\ 0)$}

Solving (3) and (1) we get the vertex,

  • \small\text{$C\left(\dfrac{4}{2a+1},\ \dfrac{4a}{2a+1}\right)$}

Now the area of the triangle ABC is found out by determinant method.

The area of the triangle with vertices at \small\text{$(x_1,\ y_1),\ (x_2,\ y_2)$} and \small\text{$(x_3,\ y_3)$} is,

\small\text{$\longrightarrow A=\Bigg|\dfrac{1}{2}\left|\begin{array}{cc}x_1-x_3&y_1-y_3\\x_2-x_3&y_2-y_3\end{array}\right|\Bigg|$}

Then the area of triangle ABC is,

\small\text{$\longrightarrow A=\left|\,\dfrac{1}{2}\left|\begin{array}{cc}4&0\\&\\\dfrac{4}{2a+1}&\dfrac{4a}{2a+1}\end{array}\right|\,\right|$}

\small\text{$\longrightarrow A=\left|\,\dfrac{1}{2}\cdot\dfrac{16a}{2a+1}\,\right|$}

\small\text{$\longrightarrow A=\left|\,\dfrac{8a}{2a+1}\,\right|$}

\small\text{$\longrightarrow \pm A=\dfrac{8a}{2a+1}$}

Given that \small\text{$A$} is a natural number. Then \small\text{$\pm A$} is a non - zero integer, so should \small\text{$\dfrac{8a}{2a+1}$} be.

Then,

\small\text{$\longrightarrow\dfrac{8a}{2a+1}\neq0$}

\small\text{$\Longrightarrow a\neq0$}

Now,

\small\text{$\longrightarrow \pm A=\dfrac{8a}{2a+1}$}

\small\text{$\longrightarrow \pm A=4\cdot\dfrac{2a}{2a+1}$}

\small\text{$\longrightarrow \pm A=4\cdot\dfrac{2a+1-1}{2a+1}$}

\small\text{$\longrightarrow \pm A=4\left(1-\dfrac{1}{2a+1}\right)$}

Since \small\text{$A$} is a natural number, this equation implies that the term \small\text{$2a+1$} exactly divides the number 1. Here \small\text{$a$} is an integer, so \small\text{$2a+1$} should be an odd integer.

Then there are only two possibilities for \small\text{$2a+1.$}

\small\text{$\longrightarrow 2a+1=1\quad\quad OR\quad\quad 2a+1=-1$}

\small\text{$\longrightarrow a=0\quad\quad OR\quad\quad a=-1$}

Since \small\text{$a\neq0,$}

\small\text{$\longrightarrow\underline{\underline{a=-1}}$}

Hence this is the only possible value of \small\text{$a.$}

Similar questions