Math, asked by sahilnagarbowdi1605, 11 months ago

Find all other zeroes of the polynomial p(x)=2x^4-7x^3+19x^2-14x+30 if two of zeroes are √2 and -√2
Please answer step by step​

Answers

Answered by mddilshad11ab
106

\sf\large\underline{Correct\: Question:}

If polynomial 2x^4-3x^3-3x^2+6x-2 are The two zeroes of √2 and -√2. Find the other polynomial of zeroes.

\sf\large\underline{Given:}

  • \rm{P(x)=2x^4-3x^3-3x^2+6x-2}
  • \rm{The\: zeroes\:are\:\sqrt{2},\:-\sqrt{2}}

\sf\large\underline{To\: Find:}

  • \rm{The\: other\:zeroes\:of\:P}

\sf\large\underline{Solution:}

  • At 1st find out the factor of polynomial with the help of given zeroes than divide, we know that given polynomial is exactly divisible by the given factors

\rm{\implies (x+\sqrt{2})(x-\sqrt{2})}

\rm{\implies x^2-2}

  • Now notice on refers attachment here
  • By solving we get here]

\rm{\implies P(x)=(x^2-2)(2x^2-3x+1)}

\rm{\implies (x^2-2)(2x^2-2x-x+1)}

\rm{\implies (x^2-2)[2x(x-1)-1(x-1)]}

\rm{\implies (x^2-2)(2x-1)(x-1)}

  • Now find out the other zeroes here]

\rm{\implies 2x-1=0}

\rm{\implies 2x=1=>x=\dfrac{1}{2}}

\rm{\implies x-1=0}

\rm{\implies x=1}

\sf\large{Hence,}

\rm{\implies The\: other\: zeroes\:are\:1,\:\dfrac{1}{2}}

Attachments:
Answered by Anonymous
59

Correct Question:

Find all other zeroes of the polynomial \rm p(x)=2x^4-3x^3-3x^2+6x-2 if two of zeroes are -\:\sqrt{2} and \sqrt{2}.

\rule{110}{1}

Answer:

  • Polynomial : \rm 2x^4-3x^3-3x^2+6x-2
  • Zeroes : -\:\sqrt{2} and \sqrt{2}

If -\:\sqrt{2} and \sqrt{2} are zeroes of the Polynomial then, Polynomial will be Divisible by \rm[x-(-\:\sqrt{2})] and \rm[x-\sqrt{2}] and so to there Products.

\rm[x-(-\:\sqrt{2})][x-\sqrt{2}]

\rm[x+\sqrt{2}][x-\sqrt{2}]

\rm x^2-2x

  • (x² - 2) will completely Divide Polynomial. So by Division.

\rule{150}{2}

\boxed{\begin{array}\quad\begin{tabular}{m{3.5em}ccccc}&&\bf 2x^2&\bf- 3x&\bf+ 1\\\cline{1-7}\multicolumn{2}{l}{\sf x{^\sf2} - \sf2\big)}&2x^4&- 3x^3&- 3x^2&+ 6x&- 2\\&& - (2x^4&&- 4x^2)&\\\cline{3-6}&&&- 3x^3&+x^2&+6x\\&&&- (-3x^3& &+ 6x)\\\cline{4-7}&&&&x^2&&-2\\&&&&- (x^2&&-2)\\\cline{5-7}&&&&\times&&\times\\\end{tabular}\end{array}}

  • Remainder Obtained will be other two zeroes of the Polynomial.

\underline{\bigstar\:\textsf{By Splitting Middle Term :}}

:\implies 2x² – 3x + 1 = 0

:\implies 2x² – (2 + 1)x + 1 = 0

:\implies 2x² – 2x – x + 1 = 0

:\implies 2x(x – 1) – 1(x – 1) = 0

:\implies (x – 1)(2x – 1) = 0

:\implies x = 1⠀or,⠀x = ½

Hence, All four Zeroes of the given polynomial are \sf\sqrt{2},-\:\sqrt{2},1\:and\:{}^{1}\!/{}_{2}

Similar questions