Find all other zeroes of the polynomial x^4+x^3-9x^2-3x+18 if two of its zeroes are root 3 and root -3.
Answers
Answered by
23
Helo here ....
Solution is given in above attachment ..
__::____________________________
Hope it's helps you.
☺☺☺✌✌✌
Solution is given in above attachment ..
__::____________________________
Hope it's helps you.
☺☺☺✌✌✌
Attachments:
Answered by
8
Heya !!!
( root 3 ) and (- root 3) are the two zeroes of the given polynomial.
( X - root 3 ) ( X + root 3 ) are also factor of polynomial P(X).
Therefore,
( X - root 3 ) ( X + root 3) = (X² - 3)
G(X) = X²-3
P(X) = X⁴ + X³ - 9X² - 3X+ 18
On dividing P(X) by G(X) we get,
X² - 3 ) X⁴ + X³ - 9X² - 3X + 18 ( X² + X -6
*********X⁴ ******-3X²
---------------------------------------------
******0****+X³ - 6X² - 3X + 18
***********X³ *********-3X
-----------------------------------------
*******0****-6X² ****0*****+18
***********-6X² ************+18
------------------------------------------
****************0********************
We get,
Remainder = 0
And,
Quotient = X² + X - 6
After factorise the quotient we will get two other zeroes of the given polynomial.
=> X²+X -6
=> X² + 3X - 2X -6
=> X ( X + 3) - 2 ( X +3)
=> (X + 3) ( X -2) = 0
=> (X + 3) = 0 OR (X -2) = 0
=> X = -3 OR X = 2
Hence,
-3 , root 3 , 2 and - root 3 are four zeroes of the polynomial X⁴+X³-9X² -3X + 18.
★ ★ ★ HOPE IT WILL HELP YOU ★ ★ ★
( root 3 ) and (- root 3) are the two zeroes of the given polynomial.
( X - root 3 ) ( X + root 3 ) are also factor of polynomial P(X).
Therefore,
( X - root 3 ) ( X + root 3) = (X² - 3)
G(X) = X²-3
P(X) = X⁴ + X³ - 9X² - 3X+ 18
On dividing P(X) by G(X) we get,
X² - 3 ) X⁴ + X³ - 9X² - 3X + 18 ( X² + X -6
*********X⁴ ******-3X²
---------------------------------------------
******0****+X³ - 6X² - 3X + 18
***********X³ *********-3X
-----------------------------------------
*******0****-6X² ****0*****+18
***********-6X² ************+18
------------------------------------------
****************0********************
We get,
Remainder = 0
And,
Quotient = X² + X - 6
After factorise the quotient we will get two other zeroes of the given polynomial.
=> X²+X -6
=> X² + 3X - 2X -6
=> X ( X + 3) - 2 ( X +3)
=> (X + 3) ( X -2) = 0
=> (X + 3) = 0 OR (X -2) = 0
=> X = -3 OR X = 2
Hence,
-3 , root 3 , 2 and - root 3 are four zeroes of the polynomial X⁴+X³-9X² -3X + 18.
★ ★ ★ HOPE IT WILL HELP YOU ★ ★ ★
Similar questions