Find all sides of a right triangle whose perimeter is equal to 60 cm and its area is equal to 150 square cm.
Answers
Answered by
0
Let the three sides of the triangle be
base = b
height = h
hypotenuse = H
b² + h² = H²
⇒(b+h)² - 2bh = H²
Area = 150
⇒(1/2)bh = 150
⇒bh = 300
Perimeter = 60
⇒ b + h + H = 60
⇒b + h = 60-H
Thus (b+h)² - 2bh = H²
⇒(60-H)² -2×300 = H²
⇒ 3600 + H² - 2×60×H - 2×300 = H²
⇒3600 - 120H -600 = 0
⇒ -120H + 3000 = 0
⇒120H = 3000
⇒ H = 3000/120 = 25cm
b+h = 60-25 = 35
⇒300/h + h = 35
⇒h² + 300 = 35h
⇒h² -35h + 300 = 0
⇒ h² -15h -20h +300 = 0
⇒(h-15)(h-20) = 0
⇒h = 15 or 20
⇒b = 20 or 15
Thus Three sides are (15,20,25)
base = b
height = h
hypotenuse = H
b² + h² = H²
⇒(b+h)² - 2bh = H²
Area = 150
⇒(1/2)bh = 150
⇒bh = 300
Perimeter = 60
⇒ b + h + H = 60
⇒b + h = 60-H
Thus (b+h)² - 2bh = H²
⇒(60-H)² -2×300 = H²
⇒ 3600 + H² - 2×60×H - 2×300 = H²
⇒3600 - 120H -600 = 0
⇒ -120H + 3000 = 0
⇒120H = 3000
⇒ H = 3000/120 = 25cm
b+h = 60-25 = 35
⇒300/h + h = 35
⇒h² + 300 = 35h
⇒h² -35h + 300 = 0
⇒ h² -15h -20h +300 = 0
⇒(h-15)(h-20) = 0
⇒h = 15 or 20
⇒b = 20 or 15
Thus Three sides are (15,20,25)
⇒(60-H)² -2×300 = H²
⇒ 3600 + H² - 2×60×H - 2×300 = H²
⇒3600 - 120H -600 = 0
⇒ -120H + 3000 = 0
⇒120H = 3000
⇒ H = 3000/120 = 25cm
b+p = 60-25 = 35
⇒300/p + p = 35
⇒p² + 300 = 35p
⇒p² -35p + 300 = 0
⇒ p² -15p -20p +300 = 0
⇒(p-15)(p-20) = 0
⇒p = 15 or 20
⇒b = 20 or 15
Answered by
0
let a right triangle,
in which , perpendicular = p
base = b , and diagonal = h
A/q,
from pythagoras theorem .
p²+b² = h² --------------------------(1)
Area of right tringle = 1/2×b.p
1/2×b.p = 150
or , bp = 300 -------------------(2)
&
perimeter = p+b+h
or, p+b+h = 60
or, p+b = 60-h -------------------(3)
Now squaring both side of the equation (3).,
(p+b)² = (60-h)²
or, p²+b²+2bp = 60²+h²-2×60.h
or, h²+2(300) = 3600+h²-120h
or, 120h = 3600-600 = 3000
or, h = 3000/120 = 25 cm
so from eqn (3) ,p+b = 60-25 = 35 ------------(4)
We know that, (p+b)²-(p-b)² = 4.pb
or, (35)²+(p-b)² = 4 (300) {from eqns (3) & (2)
or, (p-b)² = 1200 - 1225 = 25
or, p-b = (+-) 5 ------(5)
On adding the Eqns (4) & (5)
2p = 35(+-) 5
so, either p = (35+5)/2 = 20 cm ,then b = 35-20 = 15 cm
or, p = (35-5)/2 = 15 cm , then b = 35-15 = 20 cm
Therefore sides of the right triangle are 25 cm, 20 cm and 15 cm .
in which , perpendicular = p
base = b , and diagonal = h
A/q,
from pythagoras theorem .
p²+b² = h² --------------------------(1)
Area of right tringle = 1/2×b.p
1/2×b.p = 150
or , bp = 300 -------------------(2)
&
perimeter = p+b+h
or, p+b+h = 60
or, p+b = 60-h -------------------(3)
Now squaring both side of the equation (3).,
(p+b)² = (60-h)²
or, p²+b²+2bp = 60²+h²-2×60.h
or, h²+2(300) = 3600+h²-120h
or, 120h = 3600-600 = 3000
or, h = 3000/120 = 25 cm
so from eqn (3) ,p+b = 60-25 = 35 ------------(4)
We know that, (p+b)²-(p-b)² = 4.pb
or, (35)²+(p-b)² = 4 (300) {from eqns (3) & (2)
or, (p-b)² = 1200 - 1225 = 25
or, p-b = (+-) 5 ------(5)
On adding the Eqns (4) & (5)
2p = 35(+-) 5
so, either p = (35+5)/2 = 20 cm ,then b = 35-20 = 15 cm
or, p = (35-5)/2 = 15 cm , then b = 35-15 = 20 cm
Therefore sides of the right triangle are 25 cm, 20 cm and 15 cm .
Similar questions
⇒(b+p)² - 2pb = H²
Area = 150
⇒(1/2)bp = 150
⇒bp = 300
Perimeter = 60
⇒ b + p + H = 60
⇒b + p = 60-H