Find all the four angles of a cyclic quadrilateral ABCD in
which
angleA = (x + y + 10),
angleB = (y + 20),
angleC = (x + y -30)
angleD = (x + y)...
plz!! ans this question!!
Answers
Que :- Find all the four angles of a cyclic quadrilateral ABCD in which angleA = (x + y + 10), angleB = (y + 20), angleC = (x + y -30), angleD = (x + y).
Ans :- Angle A + Angle C = 180°
(x + y + 10) + (x + y - 30) = 180°
2x + 2y - 20 = 180°
2x + 2y - 20 - 180° = 0
2x + 2y - 200° = 0
(Divide the whole equation by 2)
x + y - 100 = 0 .....(1)
Now, Angle B + Angle C = 180°
(y + 20) + (x + y) = 180°
2y + 20 + x = 180°
x + 2y + 20 - 180° = 0
x + 2y - 160 = 0 ....(2)
Subtracting eqn (1) & (2)
x + y = 100
±x ± 2y = - 160
- y = -60
∴ y = 60
Putting the value in eqn (1)
x + y - 100 = 0
x + 60 - 100 = 0
x - 40 = 0
∴ x = 40
Putting the value of x and y in Given angles.
angleA = (x + y + 10) = 110°
angleB = (y + 20) = 80°
angleC = (x + y - 30) = 80
angleD = (x + y) = 100
Angle A + Angle C = 180°
(x + y + 10) + (x + y - 30) = 180°
2x + 2y - 20 = 180°
2x + 2y - 20 - 180° = 0
2x + 2y - 200° = 0
(Divide the whole equation by 2)
x + y - 100 = 0 .....(1)
Now, Angle B + Angle C = 180°
(y + 20) + (x + y) = 180°
2y + 20 + x = 180°
x + 2y + 20 - 180° = 0
x + 2y - 160 = 0 ....(2)
Subtracting eqn (1) & (2)
x + y = 100
±x ± 2y = - 160
- y = -60
∴ y = 60
Putting the value in eqn (1)
x + y - 100 = 0
x + 60 - 100 = 0
x - 40 = 0
∴ x = 40
- Putting the value of x and y in Given angles.
angleA = (x + y + 10) = 110°