Math, asked by rudrasingh1422001, 7 months ago

Find all the points of local maxima and local minima of the function f(x) = (x – 1)³ (x + 1)² (a) 1, -1, -1/5 (b) 1, -1 (c) 1, -1/5 (d) -1, -1/5​

Answers

Answered by amitnrw
5

Given : f(x) = (x – 1)³ (x + 1)²

To Find :  local maxima and local minima of the function

a) 1, -1, -1/5 (b) 1, -1 (c) 1, -1/5 (d) -1, -1/5​

Solution:

f(x) = (x – 1)³(x + 1)²

f'(x) = (x – 1)³ (2(x + 1)) + (x + 1)²(3(x - 1)²)

=> f'(x) = (x + 1)(x - 1)²( 2(x - 1) + 3(x + 1))

=>  f'(x) = (x + 1)(x - 1)²( 2x - 2+ 3x + 3)

=> f'(x) = (x + 1)(x - 1)²( 5x + 1)

f'(x) = 0

=> x = - 1 , x = 1 , x = - 1/5

x = 1 is not local maxima or minima

as f(1) =  0 , f(0.9) < 0  and  f(1.1) >  0

f(-1) = 0 , f(-0.9) < 0 , f(-1.1) < 0

Hence - 1 is local maxima

f(-1/5) = f(-0.2) = -1.106

f(-0.1) = -1.078

f(-0.3) = -1.076

Hence -1/5  is local minima

Local maxima and minima are  -1 , - 1/5  

Learn More:

find the local maximA or minima of the function: f(x)= sinx + cosx ...

https://brainly.in/question/21125629

examine the maxima and minima of the function f(x)=2x³-21x²+36x ...

https://brainly.in/question/1781825

Let f (X) = 2x^3-3x^2-12x+15 on {-2,4}. The relative maximum occurs

https://brainly.in/question/23798670

Attachments:
Similar questions