Math, asked by sreenu204308, 10 months ago

find all the positive integers triples (x, y, z) that satisfy the equation: x power 4 + y power 4 + y power 4 = 2x power 2 y power 2 + 2y power 2 z power2 + 2z power 2 x power 2 - 63​

Answers

Answered by IamIronMan0
5

Answer:

 {x}^{4}  +  {y}^{4} +  {z}^{4}   = 2 {x}^{2}  {y}^{2}  + 2 {y}^{2}  {z}^{2}  + 2 {z}^{2}  {x}^{2}  - 63

Make it quadratic in z^2

( {z}^{2} ) {}^{2}  - 2( {y}^{2}  +  {x}^{2} ) {z}^{2}  +  {x}^{4}  +  {y}^{4}  - 2 {x}^{2}  {y}^{2}  + 63 = 0 \\  \\  {z}^{2}  =  \frac{2( {y}^{2}  +  {x}^{2}) \:  \pm \:  \sqrt{4( {x}^{2} +  {y}^{2} ) {}^{2} - 4( {x}^{4} +  {y}^{4}  - 2 {x}^{2}  {y}^{2}  + 63)   }   }{2}  \\  \\  {z}^{2}  =  {x}^{2}  +  {y}^{2}  \pm \:  \sqrt{4 {x}^{2}  {y}^{2} - 63 }  \\ z =  \pm \sqrt{ {x}^{2} +  {y}^{2} \pm \:  \sqrt{4 {x}^{2}  {y}^{2} - 63 }   }

Now for integer solutions

4 {x}^{2}  {y}^{2}  - 63  \:  \:  \:  \:  must \: be \:  \: a \:  \: perfect \:  \: square

Possible values , of

4 {x}^{2}  {y}^{2}  = 64 \:  \: and \:  \: 144 \\  {x}^{2}  {y}^{2}  = 16 \:  \: and \:  \: 36\\xy= \pm 4\: , \:\pm6

Because 64 - 63 = 1 and 144 - 63 = 81

are perfect squares

So possible values of x , y

x = 4 , 3 , , 2 , 1

y = 1 , 2 , 3 , 4

Note for 6 , 1 z = (36+1 +/- 144-63

z= (37+/-9) is not an integer

And find corresponding values of z .

Similar questions