Math, asked by bhumikajindal770, 18 days ago

Find all the positive integers x, y, z satisfying the condition x^y^z * y^z^x * z^x^y = 7xyz

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that, x, y, z are positive integers and

\rm \:  {x}^{ {y}^{z} }. {y}^{ {z}^{x} }. {z}^{ {y}^{x} }  = 7xyz \\

can be rewritten as

\rm \: \dfrac{{x}^{ {y}^{z} }. {y}^{ {z}^{x} }. {z}^{ {y}^{x} }}{xyz} = 7 \\

\rm \: \dfrac{{x}^{ {y}^{z} }}{x}  \times \dfrac{{y}^{ {z}^{x} }}{y} \times  \dfrac{{z}^{ {y}^{x} }}{z}  = 7 \\

\rm \: {x}^{ {y}^{z}  - 1} \times {y}^{ {z}^{x}  - 1} \times  {z}^{ {y}^{x}  - 1} = 7 \\

As 7 is a prime number, so three cases arises.

Case :- 1

\rm \: {x}^{ {y}^{z}  - 1} = 7 \:  \: or \:  \:  {y}^{ {z}^{x}  - 1} = 1 \:  \: or \:  \:   {z}^{ {y}^{x}  - 1} = 1\\

\rm\implies \:x = 7 \:  \: and \:  \:  {y}^{z}  - 1 = 1

\rm\implies \:x = 7 \:  \: and \:  \:  {y}^{z}  = 2

\rm\implies \:x = 7 \:  \: and \:  \:  y = 2 \:  \: and \:  \: z = 1

Case :- 2

\rm \: {x}^{ {y}^{z}  - 1} = 1 \:  \: or \:  \:  {y}^{ {z}^{x}  - 1} = 7 \:  \: or \:  \:   {z}^{ {y}^{x}  - 1} = 1\\

\rm\implies \:y = 7 \:  \: and \:  \:  {z}^{x} - 1 = 1 \\

\rm\implies \:y = 7 \:  \: and \:  \:  {z}^{x}  = 2 \\

\rm\implies \:y = 7 \:  \: and \:  \:  z  = 2 \:  \: and \:  \: x = 1 \\

Case :- 3

\rm \: {x}^{ {y}^{z}  - 1} = 1 \:  \: or \:  \:  {y}^{ {z}^{x}  - 1} = 1 \:  \: or \:  \:   {z}^{ {y}^{x}  - 1} = 7\\

\rm\implies \:z = 7 \:  \: and \:  \:  {x}^{y}  - 1 = 1 \\

\rm\implies \:z = 7 \:  \: and \:  \:  {x}^{y}  = 1 + 1 \\

\rm\implies \:z = 7 \:  \: and \:  \:  {x}^{y}  = 2 \\

\rm\implies \:z = 7 \:  \: and \:  \:  x = 2 \:  \: and \:  \: y = 1 \\

Hence, all possible positive integers satisfied the given expression

\rm \:  {x}^{ {y}^{z} }. {y}^{ {z}^{x} }. {z}^{ {y}^{x} }  = 7xyz \:  \: are \\

\begin{array}{|c|c|c|} \hline \rm x&\rm y&\rm z \\ \hline\rm 7&\rm 2&\rm 1 \\ \hline \rm 1&\rm 7&\rm 2 \\ \hline \rm 2&\rm 1&\rm 7 \\ \hline  \end{array} \\

Similar questions