Math, asked by Pankajpanwar98, 8 months ago


find all the trigonometric ratios for the following triangle​

Attachments:

Answers

Answered by MaheswariS
4

\underline{\textsf{To find:}}

\textsf{All trigonometric ratios of the given angle}

\underline{\textsf{Solution:}}

\textsf{Here,}

\textsf{Opposite side=x}

\textsf{Adjacent side=x}

\textsf{Hypotenuse}\mathsf{=\sqrt{2}x}

\mathsf{sin\,45^{\circ}=\dfrac{\textsf{Opposite side}}{\textsf{Hypotenuse}}=\dfrac{x}{\sqrt{2}x}=\dfrac{1}{\sqrt{2}}}

\mathsf{cos\,45^{\circ}=\dfrac{\textsf{Adjacent side}}{\textsf{Hypotenuse}}=\dfrac{x}{\sqrt{2}x}=\dfrac{1}{\sqrt{2}}}

\mathsf{tan\,45^{\circ}=\dfrac{\textsf{Opposite side}}{\textsf{Adjacent side}}=\dfrac{x}{x}=1}

\mathsf{cosec\,45^{\circ}=\dfrac{\textsf{Hypotenuse}}{\textsf{Opposite side}}=\dfrac{\sqrt{2}x}{x}=\sqrt{2}}

\mathsf{sec\,45^{\circ}=\dfrac{\textsf{Hypotenuse}}{\textsf{Adjacent side}}=\dfrac{\sqrt{2}x}{x}=\sqrt{2}}

\mathsf{cot\,45^{\circ}=\dfrac{\textsf{Adjacent side}}{\textsf{Opposite side}}=\dfrac{x}{x}=1}

Similar questions