Math, asked by madhumitha2689, 9 months ago

find all the value of (1/2-i√3/2)^3/4 and hence prove that the product of the values is 1​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{\left(\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}\right)^\frac{3}{4}}

\textbf{To find:}

\textsf{All the values of}\;\mathsf{\left(\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}\right)^\frac{3}{4}}

\textbf{Solution:}

\textsf{First we convert the given complex number into polar form}

\mathsf{\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}=r[cos\theta+i\,sin\theta]}

\mathsf{Here,\;x=\dfrac{1}{2}\;\&\;y=\dfrac{-\sqrt{3}}{2}}}

\mathsf{r=\sqrt{x^2+y^2}=\sqrt{\dfrac{1}{4}+\dfrac{3}{4}}=1}

\mathsf{cos\theta=\dfrac{x}{r}=\dfrac{1}{2}}

\mathsf{sin\theta=\dfrac{y}{r}=\dfrac{-\sqrt{3}}{2}}

\therefore\mathsf{\theta\;lies\;IV\;quadrant}

\implies\mathsf{\theta=\dfrac{-\pi}{3}}

\implies\mathsf{\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}=cos\left(\dfrac{-\pi}{3}\right)+i\,sin\left(\dfrac{-\pi}{3}\right)]}

\implies\mathsf{\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}=cos\left(2k\pi-\dfrac{\pi}{3}\right)+i\,sin\left(2k\pi-\dfrac{\pi}{3}\right)]}

\implies\mathsf{\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}=cos\left(\dfrac{(6k-1)\pi}{3}\right)+i\,sin\left(\dfrac{(6k-1)\pi}{3}\right)]}

\implies\mathsf{\left(\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}\right)\dfrac{3}{4}=[cos\left(\dfrac{(6k-1)\pi}{3}\right)+i\,sin\left(\dfrac{(6k-1)\pi}{3}\right)]^\frac{3}{4}}

\textsf{Apply demovire's theorem}

\implies\mathsf{\left(\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}\right)\dfrac{3}{4}=cos\left(\dfrac{3(6k-1)\pi}{4{\times}3}\right)+i\,sin\left(\dfrac{3(6k-1)\pi}{3{\times}4\right)}}

\implies\mathsf{\left(\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}\right)\dfrac{3}{4}=cos\left(\dfrac{(6k-1)\pi}{4}\right)+i\,sin\left(\dfrac{(6k-1)\pi}{4}\right)}\;\;i=0,1,2,3

\textsf{The values are}

\mathsf{k=0,\;\;cos\left(\dfrac{\pi}{4}\right)+i\,sin\left(\dfrac{-\pi}{4}\right)=e^\frac{-i\pi}{4}}

\mathsf{k=1,\;\;cos\left(\dfrac{5\pi}{4}\right)+i\,sin\left(\dfrac{5\pi}{4}\right)=e^\frac{i5\pi}{4}}

\mathsf{k=2,\;\;cos\left(\dfrac{11\pi}{4}\right)+i\,sin\left(\dfrac{11\pi}{4}\right)=e^\frac{i11\pi}{4}}

\mathsf{k=3,\;\;cos\left(\dfrac{17\pi}{4}\right)+i\,sin\left(\dfrac{17\pi}{4}\right)=e^\frac{i17\pi}{4}}

\implies\mathsf{Product\;of\;the\;values}

\mathsf{=e^\frac{-i\pi}{4}{\times}e^\frac{i5\pi}{4}{\times}e^\frac{i11\pi}{4}{\times}e^\frac{i17\pi}{4}}

\mathsf{=e^\frac{i32\pi}{4}}

\mathsf{=e^{i8\pi}}

\mathsf{=(e^{i\,\pi})^8}

\mathsf{=(cos\pi+i\,sin\pi)^8}

\mathsf{=(-1+i\,0)^8}

\mathsf{=(-1)^8}

\mathsf{=1}

\textbf{Find more:}}

Solve the following equations in complex numbers and write your answer in polar and rectangular form

z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z = 0

https://brainly.in/question/16698590

Similar questions