Math, asked by parasnathsingh1216, 11 months ago

find all the values of P so that 6 lies between the roots of x^2 +2( p -3)x+9 ?

Answers

Answered by Anonymous
6

SOLUTION

Hence, values of p satisfying (1), (2) &(3) is p E (-infinite , -3/4) U (9,infinite)

Refer to the attachment.

hope it helps ☺️

Attachments:
Answered by Anonymous
22

Answer:

p =  ( 3 ,  ∞  ) U  ( 9 ,  ∞ ).

Step-by-step explanation:

Given :

\displaystyle \text{$p(x)=x^2 +2( p -3)x+9$}

Roots lies between 6.

We have to find value of p.

Using discriminant formula here  

\displaystyle \text{$b^2-4ac\geq 0$ for real values}

When roots lies between 6 means

\displaystyle \text{$b^2-4ac\geq6$}

Now put the values here we get

\displaystyle \text{$[2(p-3)]^2-4\times1\times9\geq6$}\\\\\displaystyle \text{$[2(p-3)]^2-(2\times3)^2\geq6$}\\\\\displaystyle \text{$[2(p-3)]^2-(6)^2\geq6$}

Using identity

\displaystyle \text{$(a^2-b^2)=(a+b)(a-b)$}

\displaystyle \text{$(2(p-3)+6)(2(p-3)-6)\geq6$}\\\\\displaystyle \text{$(2(p-3)+6\geq6$}\\\\\displaystyle \text{$(2(p-3)\geq0$}\\\\\displaystyle \text{$(p-3)\geq0$}\\\\\displaystyle \text{$p\geq3$ \ OR}

p € ( 3 ,  ∞  )

\displaystyle \text{$2(p-3)-6\geq6$}\\\\\displaystyle \text{$2(p-3)\geq12$}\\\\\displaystyle \text{$(p-3)\geq6$}\\\\\displaystyle \text{$p\geq9$}

p € ( 9 ,  ∞ )

In question it is said that root lie between 6.

So we get  p =  ( 3 ,  ∞  ) U  ( 9 ,  ∞ ).

Similar questions