find all the zeroes of 2x^4-3x^3-3x^2+6x-2 if you know that two of its zeroes are √2 and -√2.
Answers
Question :
Find all the zeroes of 2x⁴ - 3x³ - 3x² + 6x - 2. If you know that two of its zeroes are √2 & -√2
Answer
Given : -
Multinomial 2x⁴ - 3x³ - 3x² + 6x - 2
Zeroes are √2 and -√2
Required to find : -
- All zeroes ?
Solution : -
Let the given multinomial be;
p(x) = 2x⁴ - 3x³ - 3x² + 6x - 2
Here,
√2 and -√2 are zeroes
So,
x = √2 or -√2
This implies;
x = √2 (or) x = -√2
x - √2 = 0 (or) x + √2 = 0
Now,
(x - √2) (x + √2)
- (a + b)(a - b) = a² - b²
(x)² - (√2)²
x² - 2
Let this be ; g(x) = x² - 2
Now,
Let's divide p(x) with g(x)
We have;
Division algorithm !
p(x) = g(x) x q(x) + r(x)
{ r(x) = 0 }
p(x) = ( x² - 2 ) q(x)
2x⁴ - 3x³ - 3x² + 6x - 2 ÷ (x² - 2) = q(x)
2x² - 3x + 1 = q(x)
Let's factorize q(x)
2x² - 3x + 1
2x² - 2x - 1x + 1
2x(x - 1) + 1(x - 1)
(x - 1) (2x + 1)
Now,
(x - 1) = 0 & 2x + 1 = 0
x = 1 & x = (-1)/(2)
Therefore,
All zeroes of p(x) are √2 , -√2 , 1 , (-1)/(2)