Math, asked by KumarAbhigyan27031, 10 months ago

Find all the zeroes of 3x^3+10x^2-9x-4(using relationship between coefficient and zeroes)

Answers

Answered by harrypython
2

Answer:

x+1, 3x+4, x+1

Step-by-step explanation:

3x^3+10x^2--9x--4

1is theroot

What are other roots

f(x) =x3+10x^2--9x--4

f(-+-1) = 3(1)^3+10(--+1)^2--9(--+1) --4

=--3+10—9--4=0

f(1)=0

(x--1) is a factor of f(x)

. By division

3x^3 +10x^2--9x--4. Divide by x--1. ( 3x^2)

3x^3--3x^2. Subtracting

13x^2 -9× Divide by x-1.( 13x)

13^x2– 13x. Subtracting

4x -4. Dividing by x-1. (4)

4x-4 subtracting

0. Reminder

3x^2+13x+-4

Factorisation of 3x^2+13x +4.

(3×4 =12. 12×1=12. 12+1 =13)

3x^2 +12x+1x+4

3x(x+4) +1(x+4)

(3x+1) (x+1)

FACTORS of given polynomial are( x+1)(3x+4) (x+1)

Note you can use synthetic method also to find factors of polynomial

Similar questions