Find all the zeroes of 3x^3+10x^2-9x-4(using relationship between coefficient and zeroes)
Answers
Answered by
2
Answer:
x+1, 3x+4, x+1
Step-by-step explanation:
3x^3+10x^2--9x--4
1is theroot
What are other roots
f(x) =x3+10x^2--9x--4
f(-+-1) = 3(1)^3+10(--+1)^2--9(--+1) --4
=--3+10—9--4=0
f(1)=0
(x--1) is a factor of f(x)
. By division
3x^3 +10x^2--9x--4. Divide by x--1. ( 3x^2)
3x^3--3x^2. Subtracting
13x^2 -9× Divide by x-1.( 13x)
13^x2– 13x. Subtracting
4x -4. Dividing by x-1. (4)
4x-4 subtracting
0. Reminder
3x^2+13x+-4
Factorisation of 3x^2+13x +4.
(3×4 =12. 12×1=12. 12+1 =13)
3x^2 +12x+1x+4
3x(x+4) +1(x+4)
(3x+1) (x+1)
FACTORS of given polynomial are( x+1)(3x+4) (x+1)
Note you can use synthetic method also to find factors of polynomial
Similar questions