Math, asked by VEDIKAKO, 8 months ago

Find all the zeroes of p(x) = 2x4 11x3 + 7x2 + 13x 7, if its two zeroes are (3 + √2) and (3 √2)

Answers

Answered by HappyToHelpYou
1

Answer:

Step-by-step explanation:

If  α and β are zeroes of the polynomial then x2 -(α+ β)x + αβ .

α = (3+√2) and β =  (3 - √2).

α+ β = 6 and  αβ = 7.

∴  x2 - 6x + 7.

Given polynomial 2x4-11x3+ 7x2 + 13x - 7

x2 - 6x + 7 ) 2x4-11x3+ 7x2 + 13x - 7 ( 2x2 + x -1

2x4-12x3+14x2  (subtract)

 x3 - 7x2 + 13x

   x3-  6x2  + 7x   (subtract)

 - x2 + 6x - 7

- x2 + 6x - 7  (subtract)

∴ The Quotient is 2x2 + x -1

 = 2x2 + 2x - x  -1

= ( 2x -1)( x +1).

∴ x = 1/2 , -1 are the other zeros of the polynomial.

2)  

Using remainder theorem f(x) = g(x) (2x-1) + (x+3)

4x3-8x2 + 8x + 1 = g(x) (2x-1) + (x+3)

4x3-8x2 + 7x - 2  = g(x) (2x-1).

g(x) = (4x3-8x2 + 7x - 2) / (2x -1).

2x -1 ) 4x3-8x2 + 7x - 2 ( 2x2 - 3x + 2

 4x3-2x2   (subtract)

  - 6x2 + 7x

 - 6x2 + 3x   (subtract)

 4x - 2

 4x - 2  (subtract)

∴ g(x) = 2x2 - 3x + 2.

Similar questions