find all the zeroes of polynomial x^4+x^3-34x^2 -4x + 120 if two of its zeroes are 2 and -2
Answers
Answered by
0
p(X)=x^4+x^3-34x^2 -4x + 120
p(X) =0
X = 2 and -2
if X = 2
x^4+x^3-34x^2 -4x + 120 =0
(2)^4+(2)^3-34(2)^2-4(2)+120 =0
16+8+136-8+120=0
144-144=0
0=0
if X = -2
x^4+x^3-34x^2 -4x + 120 = 0
(-2)^4+(-2)^3-34(-2)^2-4(-2)+120=0
16-8-136+8+120=0
0= 0
I think it is helpful for you...
p(X) =0
X = 2 and -2
if X = 2
x^4+x^3-34x^2 -4x + 120 =0
(2)^4+(2)^3-34(2)^2-4(2)+120 =0
16+8+136-8+120=0
144-144=0
0=0
if X = -2
x^4+x^3-34x^2 -4x + 120 = 0
(-2)^4+(-2)^3-34(-2)^2-4(-2)+120=0
16-8-136+8+120=0
0= 0
I think it is helpful for you...
walia63:
It is wrong
Similar questions