Math, asked by sudhamaurya604, 10 months ago

Find all the zeroes of the polynomial 8x4+8x3-18x2-20x-5 if its is given that two of its zeroes are √5/2 and -√5/2

Answers

Answered by MysticalGiggles
5

\\\\\\

Here is your answer dear⛄

\\\\

 \sqrt{ \frac{5}{2} } \:  and \:  \sqrt{ \frac{ - 5}{2} }

are the two zeroes of the polynomial

  • p(x) = 8x⁴ + 8x³ - 18x² - 20x - 5

(x - \sqrt{ \frac{5}{2} ) (x + \sqrt{ \frac{5}{2}

x² - \frac{ 5 }{ 2 }

\frac{ (2x² \: - \: 5) }{ 2 }

2x² - 5 is the one of the factor

\sf\fbox\orange{ Divide \: p(x) \: by \: (2x² - 5) }

8x + 8x³ - 18x² - 20x - 5

(2x² - 5) (4x³ + 4x + 1)

\sf\fbox\green{ Split \: the \: middle \: terms }

4x² + 4x + 1

4x² + 2x + 2x + 1

2x(2x + 1) + 1(2x + 1)

(2x + 1) (2x + 1)

  • \large\pink{ x \: = \: \frac{-1}{2}

\sf\fbox\blue{ other \: zeroes \: = \: \frac{-1}{2}

\\\\

\huge\colorbox{cyan}{MysticalGiggles}

\\\\

Attachments:
Similar questions