find all the zeroes of the polynomial f(x)=2x^4-3x^3-5x^2+9x-3, if two of its zeroes are +_root3
Answers
Answered by
6
Heya !!!
Given that,
-✓3 and + ✓3 are two zeroes of the given polynomial.
(X - ✓3) ( X + ✓3) = X² - 3 is also factor of the given polynomial.
G(X) = X² - 3
P(X) = 2X⁴ - 3X³ - 5X² + 9X - 3
On dividing P(X) by G(X) we get,
X² - 3 ) 2X⁴-3X³-5X²+9X-3 ( 2X² -3X +1
********2X⁴*****-6X²
---------------------------------------------------
************-3X³ + X² + 9X - 3
************-3X³*******+9X
----------------------------------------------
**************+X² *********-3
*************X²***********-3
----------------------------------------------
Remainder = 0
We get,
Remainder = 0
And,
Quotient = 2X²-3X+1
Factories the quotient then we will get two other zeroes of the given polynomial.
=> 2X² - 3X + 1
=> 2X² - 2X - X + 1
=> 2X ( X - 1 ) - 1 ( X - 1)
=> ( X -1) ( 2X -1) = 0
=> X = 1 OR X = 1/2
Hence,
-✓3 , 1 , 1/2 and ✓3 are four zeroes of the given polynomial 2X⁴-3X³-5X²+9X-3.
★ HOPE IT WILL HELP YOU ★
Given that,
-✓3 and + ✓3 are two zeroes of the given polynomial.
(X - ✓3) ( X + ✓3) = X² - 3 is also factor of the given polynomial.
G(X) = X² - 3
P(X) = 2X⁴ - 3X³ - 5X² + 9X - 3
On dividing P(X) by G(X) we get,
X² - 3 ) 2X⁴-3X³-5X²+9X-3 ( 2X² -3X +1
********2X⁴*****-6X²
---------------------------------------------------
************-3X³ + X² + 9X - 3
************-3X³*******+9X
----------------------------------------------
**************+X² *********-3
*************X²***********-3
----------------------------------------------
Remainder = 0
We get,
Remainder = 0
And,
Quotient = 2X²-3X+1
Factories the quotient then we will get two other zeroes of the given polynomial.
=> 2X² - 3X + 1
=> 2X² - 2X - X + 1
=> 2X ( X - 1 ) - 1 ( X - 1)
=> ( X -1) ( 2X -1) = 0
=> X = 1 OR X = 1/2
Hence,
-✓3 , 1 , 1/2 and ✓3 are four zeroes of the given polynomial 2X⁴-3X³-5X²+9X-3.
★ HOPE IT WILL HELP YOU ★
Answered by
1
Answer:
Hope this helps you ✌️✌️
Attachments:
Similar questions