find all the zeros of 2x⁴- 3x³-3x²+6x2 if its zeros are root 2 and -2 root.??
Answers
EXPLANATION.
All the zeroes of the polynomials,
⇒ 2x⁴ - 3x³ - 3x² + 6x - 2.
If its zeroes are √2 and -√2.
As we know that,
Zeroes of polynomials,
⇒ x = √2.
⇒ x - √2.
⇒ x = - √2.
⇒ x + √2.
As we know that,
Products of the zeroes.
⇒ (x - √2)(x + √2).
As we know that,
Formula of :
⇒ (x² - y²) = (x - y)(x + y).
⇒ (x² - 2).
Divide :
⇒ 2x⁴ - 3x³ - 3x² + 6x - 2 by (x² - 2).
We get.
⇒ 2x² - 3x + 1.
Now we factorizes the equation into middle term splits, we get.
⇒ 2x² - 2x - x + 1 = 0.
⇒ 2x(x - 1) - 1(x - 1) = 0.
⇒ (2x - 1)(x - 1) = 0.
⇒ x = 1/2 and x = 1.
All zeroes of the polynomials are,
⇒ √2 , -√2 , 1/2 , 1.
MORE INFORMATION.
Conjugates roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
All the zeroes of the polynomials,
⇒ 2x⁴ - 3x³ - 3x² + 6x - 2.
If its zeroes are √2 and -√2.
As we know that,
Zeroes of polynomials,
⇒ x = √2.
⇒ x - √2.
⇒ x = - √2.
⇒ x + √2.
As we know that,
Products of the zeroes.
⇒ (x - √2)(x + √2).
As we know that,
Formula of :
⇒ (x² - y²) = (x - y)(x + y).
⇒ (x² - 2).
Divide :
⇒ 2x⁴ - 3x³ - 3x² + 6x - 2 by (x² - 2).
We get.
⇒ 2x² - 3x + 1.
Now we factorizes the equation into middle term splits, we get.
⇒ 2x² - 2x - x + 1 = 0.
⇒ 2x(x - 1) - 1(x - 1) = 0.
⇒ (2x - 1)(x - 1) = 0.
⇒ x = 1/2 and x = 1.
All zeroes of the polynomials are,
⇒ √2 , -√2 , 1/2 , 1.
_______________________________________________________________