Math, asked by merakisiddkaundilya, 1 month ago

find all the zeros of 2x⁴- 3x³-3x²+6x2 if its zeros are root 2 and -2 root.??

Attachments:

Answers

Answered by amansharma264
8

EXPLANATION.

All the zeroes of the polynomials,

⇒ 2x⁴ - 3x³ - 3x² + 6x - 2.

If its zeroes are √2 and -√2.

As we know that,

Zeroes of polynomials,

⇒ x = √2.

⇒ x - √2.

⇒ x = - √2.

⇒ x + √2.

As we know that,

Products of the zeroes.

⇒ (x - √2)(x + √2).

As we know that,

Formula of :

⇒ (x² - y²) = (x - y)(x + y).

⇒ (x² - 2).

Divide :

⇒ 2x⁴ - 3x³ - 3x² + 6x - 2 by (x² - 2).

We get.

⇒ 2x² - 3x + 1.

Now we factorizes the equation into middle term splits, we get.

⇒ 2x² - 2x - x + 1 = 0.

⇒ 2x(x - 1) - 1(x - 1) = 0.

⇒ (2x - 1)(x - 1) = 0.

⇒ x = 1/2 and x = 1.

All zeroes of the polynomials are,

⇒ √2 , -√2 , 1/2 , 1.

                                                                                                                     

MORE INFORMATION.

Conjugates roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by shariquekeyam
8

\huge\mathcal{\pink{A}}\huge\mathcal{\purple{N}}\huge\mathcal{\green{S}}\huge\mathcal{\blue{W}}\huge\mathcal{\red{E}}\huge\mathcal{R}

All the zeroes of the polynomials,

⇒ 2x⁴ - 3x³ - 3x² + 6x - 2.

If its zeroes are √2 and -√2.

As we know that,

Zeroes of polynomials,

⇒ x = √2.

⇒ x - √2.

⇒ x = - √2.

⇒ x + √2.

As we know that,

Products of the zeroes.

⇒ (x - √2)(x + √2).

As we know that,

Formula of :

⇒ (x² - y²) = (x - y)(x + y).

⇒ (x² - 2).

Divide :

⇒ 2x⁴ - 3x³ - 3x² + 6x - 2 by (x² - 2).

We get.

⇒ 2x² - 3x + 1.

Now we factorizes the equation into middle term splits, we get.

⇒ 2x² - 2x - x + 1 = 0.

⇒ 2x(x - 1) - 1(x - 1) = 0.

⇒ (2x - 1)(x - 1) = 0.

⇒ x = 1/2 and x = 1.

All zeroes of the polynomials are,

⇒ √2 , -√2 , 1/2 , 1.

                                                                                                                     

\\ \\ _______________________________________________________________

Similar questions