Find all the zeros of 2x⁴-3x³-5x²+9x-3,it being given that two of zeros are√3 and-√3
1 & 1/2
2
3/2,&6/2
√2 &-√2
Answers
p(x) : 2x⁴+3x³-5x²-9x-3
zeroes are √3 and -√3
So factors will be (x+√3)(x-√3)
hence zeroes = x²-(√3)²
=x²-3
g(x) = x²-3
x²-3) 2x⁴+3x³-5x²-9x-3 ( 2x²+3x+1
2x⁴ -6x²
⁽⁻⁾ ⁽⁺⁾
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
3x³+ x²-9x
3x -9x
⁽⁻⁾ ⁽⁺⁾
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
x²-3
x²-3
⁽⁻⁾ ⁽⁺⁾
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
0
now factorising, 2x²+3x+1
2x²+2x+1x+1
2x(x+1)+1(x+1)
(2x+1)(x+1)=0
2x+1=0 x+1=0
2x= -1 x= -1
Answer:
Step-by-step explanation:
the other zeroes are and
Step-by-step explanation:
given polynomial :
2 of its zeroes are +√3 and -√3
let the zeroes be
hence zeroes =
now dividing polynomial by
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
3x -9x
⁽⁻⁾ ⁽⁺⁾
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
x²-3
x²-3
⁽⁻⁾ ⁽⁺⁾
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
0 0
now factorising, 2x²+3x+1
2x²+2x+1x+1
2x(x+1)+1(x+1)
(2x+1)(x+1)=0
2x+1=0 x+1=0
2x= -1 x= -1
x = -1/2
therefore other zeroes are -1/2 and -1
hope iy helps
:0