Math, asked by lovesh86, 11 months ago

find all the zeros of polynomial FX equal to 2 x ki power 4 - 3 x cube minus 5 x square + 9 x minus 3 if two of its zeros are plus minus under root 3​

Answers

Answered by waqarsd
3

Answer:

Step-by-step explanation:

WKT \\\\An\;Equation\;with\;roots\;a\;and\;b\;is\;of\;the\;form\\\\x^2-(a+b)x+ab =0\\\\Now \\\\EQ\;with \;roots\\\\\sqrt{3}\;and\;-\sqrt{3}\;is\\\\x^2-3=0\\\\Now\\2x^4-3x^3-5x^2+9x-3=0\\\\\\2x^4-3x^3-5x^2+9x-3=0\\\\2x^4-x^3-6x^2+3x-2x^3+x^2+6x-3=0\\\\x(2x^3-x^2-6x+3)-1(2x^3-x^2-6x+3)=0\\\\(x-1)(2x^3-x^2-6x+3)=0\\\\(x-1)(2x^3-6x-x^3+3)=0\\\\(x-1)(2x(x^2-3)-(x^2-3))=0\\\\(x-1)(2x-1)(x^2-3)=0\\\\Therefore\;the\;other\;roots\;are\;\\\\x=1\\\\x=\frac{1}{2}\\\\

HOPE IT HELPS

Similar questions