Math, asked by dhenu007, 1 year ago

find all the zeros of the 2x^4-9x^3+5x^2+3x-1
if two of its zeros are 2+√3 and
2-√3.
if anyone answers fast I will mark them as brainliest. ​

Answers

Answered by siddhartharao77
4

Step-by-step explanation:

Given Equation is 2x⁴ - 9x³ + 5x² + 3x - 1

Given zeroes are (2 + √3) and (2 - √3)

= {x - (2 + √3)}{x - (2 - √3)}

= (x - 2 - √3)(x - 2 + √3)

= (x - 2)² - (√3)²

= x² + 4 - 4x - 3

= x² - 4x + 1

Divide f(x) by x² - 4x + 1.

Long Division Method:

x² - 4x + 1) 2x⁴ - 9x³ + 5x² + 3x - 1(2x² - x - 1

                 2x⁴ - 8x³ + 2x²

                 ---------------------------------

                            -x³ + 3x² + 3x

                            -x³ + 4x² - x

                    -----------------------------------

                                         -x² + 4x - 1

                                         -x² + 4x - 1

                          --------------------------------

                                                  0

Dividend = Divisor * Quotient + Remainder

                = (x² - 4x + 1)(2x² - x - 1)

                = (x² - 4x - 1)(2x² - 2x + x - 1)

                = (x² - 4x - 1)(2x(x - 1) + 1(x - 1))

                = (x² - 4x + 1)(2x + 1)(x - 1)

                 = (x - 2 - √3)(x - 2 + √3)(2x + 1)(x - 1)

Therefore, Zeroes are : 2 ± √3, -1/2, 1

Hope it helps!

Similar questions