Math, asked by Arshdeepsingh780, 1 year ago

find all the zeros of x^4+4x^3-2x^2-12x+9. if you know that two of its zeroes are -1 and -1?

Answers

Answered by ahadashfaan141
1

Answer:

(x - 4 + 5i)(x - 4 - 5i) =  

x^2 - 4x - 5ix - 4x + 16 + 20i + 5ix - 2i + 25  

x^2 - 8x + 41  

Dividing the original polynomial by that we get  

. . . . . . . . . . . . . . . . . . . . . . x^2 . - 4x - 45  

. . . . . . . . . . ____________________________  

x^2 - 8x + 41 | x^4 - 12x^3 + 28x^2 + 196x - 1845  

. . . . . . . . . . . x^4 - 8x^3 . + 41x^2  

. . . . . . . . . . . _________________  

. . . . . . . . . . . . . . . -4x^3 - 13x^2 + 196x  

. . . . . . . . . . . . . . . -4x^3 + 32x^2 - 164x  

. . . . . . . . . . . . . . .___________________'  

. . . . . . . . . . . . . . . . . . . . . -45x^2 + 360x - 1845  

. . . . . . . . . . . . . . . . . . . . . -45x^2 + 360x - 1845  

x^2 - 4x - 45 factors to (x - 9)(x + 5), which leaves 9 and -5 as our other zeros.

Similar questions