Math, asked by harrypotter456y, 2 months ago

find all the zeros of x ⁴+x³-9x²-3x+18 if two of its zeros are√3,-√3.

Answers

Answered by brainlyyourfather
17

Answer:

x

2

−2

2

x−30

We can further write it as

x

2

−2

2

x−30=x

2

−5

2

x+3

2

x−30

By taking out the common terms

x

2

−2

2

x−30=x(x−5

2

)+3

2

(x−5

2

)

So we get,

x

2

−2

2

x−30=(x+3

2

)(x−5

2

)

Answered by harshit5864
0

Answer:

Let f(x)=x4+x3−11x2−9x+18

Given : 3 and -3 are the zeroes of the polynomial (x+3) and (x−3) are factors of f(x), and consequently (x−3)(x+3)=(x2−9) is factor of f(x) 

Divide f(x) by (x2−9) we get

Put f(x)=0

(x2+x−2)(x2−9)=0

(x−1)(x+2)(x−3)(x+3)=0

x=1 or x=−2 or x=3 or x=−3

hence all the zeros of the given polynomial are 1,−2,3 and −3.

Step-by-step explanation:

make me brainlist

please give me some thanks

Similar questions