Find all three digit numbers abc (with a not equal to 0) such that a 2 +b 2 +c 2 is divisible by 26.
Answers
Answered by
2
a, b, c are digits.
so 0 <= c <= 9, 0 <= b <= 9... 1 <= a <= 9
Number N = abc = 100 a + 10 b + c
given, A = a² + b² + c² = 26 k for some integer k.
Maximum value of A = 9² + 9² + 9² = 243
Minimum value of A = 1² + 0² + 0² = 1
Thus 1 <= 26 k <= 243
So, k = 1, 2, 3, 4, 5, 6 , 7, 8, 9
1) k = 1 : a² + b² + c² = 26
Clearly, a,b,c <= 5
a, b, c are from : (1, 3, 4) or, (1, 0, 5)
Numbers: abc = N = 134, 143, 341,314, 413, 431
2) k = 2. a² + b² + c² = 52 = 2² * 13
clearly, a,b,c <= 7
(a,b,c) are : (0,4,6)
Numbers : N = 406, 460, 604, 640
3) k = 3. a² + b² + c² = 78
clearly, a,b,c <= 8
(a,b,c) are (2,5,7) NUmbers : 257,275,527,572,725,752
4) k = 4... a² + b² + c² = 2² * 26 = 104
(a,b,c) = (2,6,8) : Numbers: 268, 286,628,682,826,862
5) k =5. a²+b²+c² = 130 = 2*5*13
(a,b,c) = (0,7,9). So numbers: 709, 790, 907, 970.
6) k = 6. a² + b² + c² = 156
(a,b,c) : no combinations possible.
7) k = 7. a²+b²+c² = 182
(a,b,c) : no combinations possible.
8) k = 8. a²+b²+c² = 208
(a,b,c) : no combinations...
9) k = 9. a²+b²+c² = 234
(a,b,c) = no combinations...
so 0 <= c <= 9, 0 <= b <= 9... 1 <= a <= 9
Number N = abc = 100 a + 10 b + c
given, A = a² + b² + c² = 26 k for some integer k.
Maximum value of A = 9² + 9² + 9² = 243
Minimum value of A = 1² + 0² + 0² = 1
Thus 1 <= 26 k <= 243
So, k = 1, 2, 3, 4, 5, 6 , 7, 8, 9
1) k = 1 : a² + b² + c² = 26
Clearly, a,b,c <= 5
a, b, c are from : (1, 3, 4) or, (1, 0, 5)
Numbers: abc = N = 134, 143, 341,314, 413, 431
2) k = 2. a² + b² + c² = 52 = 2² * 13
clearly, a,b,c <= 7
(a,b,c) are : (0,4,6)
Numbers : N = 406, 460, 604, 640
3) k = 3. a² + b² + c² = 78
clearly, a,b,c <= 8
(a,b,c) are (2,5,7) NUmbers : 257,275,527,572,725,752
4) k = 4... a² + b² + c² = 2² * 26 = 104
(a,b,c) = (2,6,8) : Numbers: 268, 286,628,682,826,862
5) k =5. a²+b²+c² = 130 = 2*5*13
(a,b,c) = (0,7,9). So numbers: 709, 790, 907, 970.
6) k = 6. a² + b² + c² = 156
(a,b,c) : no combinations possible.
7) k = 7. a²+b²+c² = 182
(a,b,c) : no combinations possible.
8) k = 8. a²+b²+c² = 208
(a,b,c) : no combinations...
9) k = 9. a²+b²+c² = 234
(a,b,c) = no combinations...
Similar questions
Social Sciences,
8 months ago
History,
8 months ago
Chemistry,
1 year ago
Chemistry,
1 year ago
Hindi,
1 year ago