find all trigonometric ratios if sin theta =3/7
Answers
Hi dear asker.
_______________
There are total of six trigonometric
functions:-
- Sine
- Cosine
- Tangent
- Cosecant
- Secant
- Cotangent
_______________
According to question :-
sin(theta) = 3/7
Perpendicular / hypotenuse = 3/7 { sin(theta) = per. / hyp.) }
thus, perpendicular = 3 and Hypotenuse = 7
Using Pythagoras theorem for the other side:-
we know :-
(base)² + (perpendicular) ² = (hypotenuse)²
(base)² = (hypotenuse)² - (perpendicular)²
putting the respective values in above equation:-
(base)² = 7² - 3²
(base) ² = 49 - 9
(base)² = 40
base = √40.
________________________
Now :-
perpendicular = 3
hypotenuse = 7
base = √40.
____________________
sin(theta) = 3/7 (given)
cos(theta) = base/ hypotenuse
➡ √40/7
tan(theta) = perpendicular/base
➡ 7/3
cosec(theta)
➡1/sin(theta)
➡ 7/3
Sec(theta)
➡ 1/ cos(theta)
➡ 7/√40
cot(theta)
➡ 1/tan (theta)
➡ 3/7
__________________
Random thought :-
Intelligent people Fail.
but Hardworker Never Does.
__________________
thank you.
hope this helps u
sin Ф= =
hyp²= opp²+adj²
adj²= 7²-3²
= 49-9
adj =
cos Ф =
cos Ф =
tan Ф =
tan Ф =
we know that
cosec Ф =
cosec Ф =
secФ =
secФ=
cot Ф =
cot Ф =