find all value of sinx if 8sinx- cosx=4
Answers
Answered by
1
Heya
______________________________
put Sin x = z
Cos x = √ ( 1 - z² )
=>
8z - √(1-z²) = 4
=>
(8z-4) = √(1-z²)
SQUARING BOTH SIDE'S
=>
(8z-4)² =1-z²
=>
64z² +16 -64z = 1 - z²
=>
65z² -64z + 15 = 0
=>
z = (64 + 14 )/130
OR
z = (64-14 ) /130
=>
z =3/5 OR z = 5/13
So, Sin x = 3/5 OR Sin x = 5/13
_______________________________
total number of values of Sin x is 4
______________________________
put Sin x = z
Cos x = √ ( 1 - z² )
=>
8z - √(1-z²) = 4
=>
(8z-4) = √(1-z²)
SQUARING BOTH SIDE'S
=>
(8z-4)² =1-z²
=>
64z² +16 -64z = 1 - z²
=>
65z² -64z + 15 = 0
=>
z = (64 + 14 )/130
OR
z = (64-14 ) /130
=>
z =3/5 OR z = 5/13
So, Sin x = 3/5 OR Sin x = 5/13
_______________________________
total number of values of Sin x is 4
Similar questions