Math, asked by harithareddy1115, 2 months ago

Find all values of 'm' such that the roots of the equation 2x^(2)-x-1=0 lie inside the roots of the equation x^(2)+(2m-m^(2))x-2m^(3)=0​

Answers

Answered by nishtha12112007
0

Answer:

your answer in given pic

Step-by-step explanation:

I hope it's help you

Attachments:
Answered by steffiaspinno
0

m=-1/2 and 1

Explanation:

It is given that roots of the equation 2x^{2} -x-1=0 lie inside the roots of the equation x^{2} +(2m-m^{2})x-2m^{3}=0  that means both roots are equal and discriminant of equation is 0.

2x^{2} -x-1=0

2x^{2} -2x+x-1=0

[tex]2x(x -1)+1(x-1)=0\\ [/tex]

(2x+1)(x-1)=0\\

Here we get x=-1/2 and 1

                                                                                                                                                                                                                                              Now we will put these values in equation  x^{2} +(2m-m^{2})x-2m^{3}=0

Put x= 1

x^{2} +(2m-m^{2})x-2m^{3}=0

(1)^{2} +(2m-m^{2})(1) -2m^{3}=0

 2m^{3} +m^{2} -2m-1=0

After solving we get,

m=-1/2 and m=1                                                                                                                                                                                                                                                                                                                

Similar questions