Math, asked by ayaanin07, 5 hours ago

Find all x ∈ R that solve this equation: 123 = x · (2x · (3x − 3) − 2) + 100 + 20 + 3

Answers

Answered by Nayeem2023
1

Step-by-step explanation:

Find all x ∈ R that solve this equation: 123 = x · (2x · (3x − 3) − 2) + 100 + 20 + 3

Attachments:
Answered by Manmohan04
0

Given,

Equation, \[123 = x \times \left( {2x \times \left( {3x - 3} \right) - 2} \right) + 100 + 20 + 3\]\\

Solution,

Know that, \[x \in R\]

\[\begin{array}{l}123 = x \times \left( {2x \times \left( {3x - 3} \right) - 2} \right) + 100 + 20 + 3\\ \Rightarrow 123 = x\left( {6{x^2} - 6x - 2} \right) + 123\\ \Rightarrow x\left( {6{x^2} - 6x - 2} \right) = 0\\ \Rightarrow x\left( {3{x^2} - 3x - 1} \right) = 0\end{array}\]

Solve the polynomial,

\[x = 0\]

\[3{x^2} - 3x - 1 = 0\]

Using Shri Dharacharya Formula,

\[ \Rightarrow x = \frac{{3 \pm \sqrt {{{\left( { - 3} \right)}^2} + 4 \times 3 \times 1} }}{{2 \times 3}}\]

\[ \Rightarrow x = \frac{{3 \pm \sqrt {9 + 12} }}{6}\]

\[ \Rightarrow x = \frac{{3 \pm \sqrt {21} }}{6}\]

Hence the value of x are \[0,\left( {\frac{{3 + \sqrt {21} }}{6}} \right),\left( {\frac{{3 - \sqrt {21} }}{6}} \right)\].

Similar questions