Find all zeroes of 3x⁴+6x³-2x²-10x-5 ,if two of its zeros are√(5/3 )and -√(5/3)
Answers
Answered by
2
Ans:- Given:-
p(x) = 3x⁴+6x³-2x²-10x-5
Zeroes = √5/√3 and -√5/√3
To find other zeroes
Solution:-
if √5/√3 and -√5/√3 are the zeroes then,
(x + √5/√3)(x -√5/√3)
= x² - 5/3
= 3x² - 5
Now, divide the polynomials 3x⁴+6x³-2x²-10x-5 by 3x² - 5
=> (3x⁴+6x³-2x²-10x-5) ÷ (3x² - 5)
=> (3x⁴+3x³+3x³+3x²-5x²-5x-5x-5) ÷ (3x² - 5)
=> (3x³(x+1)+3x²(x+1)-5x(x+1)-5(x+1)) ÷ (3x²-5)
=> (x+1)(3x³+3x²-5x-5) ÷ (3x²-5)
=> (x+1)(3x²(x+1)-5(x+1)) ÷ (3x²-5)
=> (x+1)(x+1)(3x²-5) ÷ (3x²-5)
=> (x+1)(x+1)
now,
=> x+1=0
=> x= (-1)
=> x+1 = 0
=> x = (-1)
hence -1 and -1 are the other zeroes of the polynomials
here is your answer
hope it will help you
Similar questions