find all zeroes of polynomial (2x^4-9x^3+5x^2+3x-1)if two of its zeros are (2+‚àö3) and(2-‚àö3)
Answers
Answered by
3
When U divide the p(x) by the roots,
p(x) = 2x⁴-9x³+5x²+3x-1
g(x) = x²-4x+1 (Because x = 2+√3 ⇒ (x-2-√3) and x = 2-√3 ⇒ (x-2+√3),
Multiplying them (x-2-√3)(x-2+√3) = x²-4x+1)
After Dividing p(x) / g(x) ⇒ q(x) = 2x²-x-1
r(x) = 0
_________________________________________________________
And zeroes are 2x²-x-1
= 2x²-x-1
= 2x²-2x+x-1
= 2x(x-1) +1(x-1)
= (2x+1)(x-1)
Then x = -1/2 and 1
________________________________________________________
Hence all the zeroes are 2+√3, 2-√3, -1/2, 1
________________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
p(x) = 2x⁴-9x³+5x²+3x-1
g(x) = x²-4x+1 (Because x = 2+√3 ⇒ (x-2-√3) and x = 2-√3 ⇒ (x-2+√3),
Multiplying them (x-2-√3)(x-2+√3) = x²-4x+1)
After Dividing p(x) / g(x) ⇒ q(x) = 2x²-x-1
r(x) = 0
_________________________________________________________
And zeroes are 2x²-x-1
= 2x²-x-1
= 2x²-2x+x-1
= 2x(x-1) +1(x-1)
= (2x+1)(x-1)
Then x = -1/2 and 1
________________________________________________________
Hence all the zeroes are 2+√3, 2-√3, -1/2, 1
________________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
nitthesh7:
if u find it as most helpful pls mark it as brainliest
Similar questions