find all zeroes of the polynomial 4xpower 4 - 20 xcube + 23 x square + 5x-6 if two zeroes are 2 and 3
Answers
Answered by
2
Here is your solution.
Given,
Quartic Polynomial = 4x⁴ - 20x³ + 23x² + 5x - 6.
Zeroes = 2 and 3.
We have to find 2 another zeroes.
Let's do it !
Let another 2 zeroes are α and ß.
Here,
Coefficient of x⁴ ( a ) = 4
Coefficient of x³ ( b ) = -20
Coefficient of x² ( c ) = 23
Coefficient of x ( d ) = 5
Constant term ( e ) = -6
We know the relationship between zeroes and coefficient of x of a Quatric Polynomial.
⇒ Sum of zeroes = -b / a
⇒ 2 + 3 + α + ß = - ( -20 ) / 4
⇒ 5 + α + ß = 20 / 4
⇒ 5 + α + ß = 5
⇒ α + ß = 5 - 5
∴ α + ß = 0 ----------- ( 1 )
Now,
⇒ Product of zeroes = e/a
⇒ 2 × 3 × α × ß = -6 / 4
⇒ 6αß = -6/4
⇒ αß = -6 ÷ ( 4 × 6 )
⇒ αß = -1/4. --------- ( 2 )
Now,
⇒ ( α - ß )² = ( α + ß )² - 4αß
By substituting the values of ( α + ß ) and ( αß ).
⇒ ( α - ß )² = ( 0 )² - 4 ( -1/4 )
⇒ ( α - ß )² = 0 + 1
⇒ ( α - ß )² = 1
⇒ ( α - ß ) = √1
∴ ( α - ß ) = 1 ----------- ( 3 )
By adding ( 1 ) and ( 3 ) ,
⇒ α + ß + α - ß = 0 + 1
⇒ 2α = 1
∴ α = 1/2
Now,by substituting the value of α in ( 1 ),
⇒ α + ß = 0
⇒ ( 1/2 ) + ß = 0
∴ ß = -1/2
Hence,the another two zeroes are ( 1/2 ) and ( -1/2 ).
Hope it helps !!
Given,
Quartic Polynomial = 4x⁴ - 20x³ + 23x² + 5x - 6.
Zeroes = 2 and 3.
We have to find 2 another zeroes.
Let's do it !
Let another 2 zeroes are α and ß.
Here,
Coefficient of x⁴ ( a ) = 4
Coefficient of x³ ( b ) = -20
Coefficient of x² ( c ) = 23
Coefficient of x ( d ) = 5
Constant term ( e ) = -6
We know the relationship between zeroes and coefficient of x of a Quatric Polynomial.
⇒ Sum of zeroes = -b / a
⇒ 2 + 3 + α + ß = - ( -20 ) / 4
⇒ 5 + α + ß = 20 / 4
⇒ 5 + α + ß = 5
⇒ α + ß = 5 - 5
∴ α + ß = 0 ----------- ( 1 )
Now,
⇒ Product of zeroes = e/a
⇒ 2 × 3 × α × ß = -6 / 4
⇒ 6αß = -6/4
⇒ αß = -6 ÷ ( 4 × 6 )
⇒ αß = -1/4. --------- ( 2 )
Now,
⇒ ( α - ß )² = ( α + ß )² - 4αß
By substituting the values of ( α + ß ) and ( αß ).
⇒ ( α - ß )² = ( 0 )² - 4 ( -1/4 )
⇒ ( α - ß )² = 0 + 1
⇒ ( α - ß )² = 1
⇒ ( α - ß ) = √1
∴ ( α - ß ) = 1 ----------- ( 3 )
By adding ( 1 ) and ( 3 ) ,
⇒ α + ß + α - ß = 0 + 1
⇒ 2α = 1
∴ α = 1/2
Now,by substituting the value of α in ( 1 ),
⇒ α + ß = 0
⇒ ( 1/2 ) + ß = 0
∴ ß = -1/2
Hence,the another two zeroes are ( 1/2 ) and ( -1/2 ).
Hope it helps !!
Similar questions