Math, asked by smarty9268779, 1 year ago

find all zeroes of the polynomial x4+x3-14x2-2x+24 if two zeroes are root 2 and -root 2​

Answers

Answered by sprao534
27

Please see the attachment

Attachments:
Answered by dikshaagarwal4442
1

Answer:

The other two zeroes will be at 3 and -4

Step-by-step explanation:

  • The polynomial is, x^4+ x^3 -16x^{2} -2x + 24
  • Factorization:  x^4+ x^3 -16x^{2} -2x + 24

                             =  x^4 - 2x^2 + x^3 -2x^2 -12x^{2}+ 24

                             = x²(x²-2) + x(x²-2) -12(x²-2)

                             = (x²-2)(x² + x -12)

  • So here one factor is (x²-2).
  • To make the polynomial zero, either (x²-2)= 0

                                                           or, (x² + x -12) = 0 or both can be zero

  • When  (x²-2)= 0 then (x + √2)(x - √2) = 0

                                           x = √2 or -√2

  • When (x² + x -12) = 0

                  x² +4x - 3x - 12 = 0

                  (x + 4)(x - 3) = 0

                  x = -4 or 3

All zeros of the polynomial will be √2, -√2, -4 and 3

Similar questions