Find all zeroes of x^4_3x^3_5x^2+21x_14 if two of it's zeroes are √7 and -√7
Answers
Answered by
0
p(x)=x^4-3x^3-5x^2+21x-14,
(x=√7) (x= -√7)
(x-√7) (x+√7)
g(x)=x^2-7.
Divide g(x) by p(x)
x^2-7)x^4-3x^3-5x^2+21x-14(x^2-3x+2
- +x^4 -7X^2
- +
-3x^3+2x^2+21x-14
- -3x^3 +21x
+ -
2x^2-14
- +2x^2-14
- +
0
q(x)=x^2-3x+2
q(x)=x^2-2x-x+2
q(x)=x(x-2)-1(x-2)
q(x)=(x-1) (x-2)
x=1,x=2.
Hence,the zeroes of p(x) are √7,-√7,1,2.
HOPE IT HELPS U...
(x=√7) (x= -√7)
(x-√7) (x+√7)
g(x)=x^2-7.
Divide g(x) by p(x)
x^2-7)x^4-3x^3-5x^2+21x-14(x^2-3x+2
- +x^4 -7X^2
- +
-3x^3+2x^2+21x-14
- -3x^3 +21x
+ -
2x^2-14
- +2x^2-14
- +
0
q(x)=x^2-3x+2
q(x)=x^2-2x-x+2
q(x)=x(x-2)-1(x-2)
q(x)=(x-1) (x-2)
x=1,x=2.
Hence,the zeroes of p(x) are √7,-√7,1,2.
HOPE IT HELPS U...
Similar questions