Math, asked by chiragnaik1967, 7 hours ago

Find all zeros of the polynomial f(x) = 2x² - 2x³-7x² + 3x + 6, if its two zeros are ✓-3/2 and ✓3/2​

Answers

Answered by Anonymous
82

Given: We are given with two zeroes of polynomial are √-3/2 and √3/2 and f(x)=2x^2-2x^3-7x^2+3x+6.

To Find: Find all zeroes of the polynomial.

\:\:\:___________________

 \:  \sf \: f(x) = 2 {x}^{4}  - 2 {x}^{3}  - 7 {x}^{2}  + 3x + 6 \\  \\ \sf  -  \sqrt{ \frac{3}{2} } and \sqrt{ \frac{3}{2} } are \: zeroes \: of \: f(x).

Now find the factor of the zeroes which are given:

 \sf \: factor = (x +  \sqrt{ \frac{3}{2} } )(x -  \sqrt{ \frac{3}{2} } )

Now multiply both terms

 \:  \sf \:  =  {x}^{2}  -  \frac{3}{2}

Now take LCM

 \:  \sf \:  =  \frac{2 {x}^{2} - 3 }{2}

Now take common numbers

 \:  \sf \:  =  \frac{1}{2} (2 {x}^{2}  - 3)

After dividing the term 2x^4-2x^3-7x^2+3x+6 from 2x^2-3 we got x^2-x-2.

Now put on f(x) value

 \:  \sf \: f(x) = 2 {x}^{2}  - 3( {x}^{2}  - x - 2) \\  \\  \:  \sf \: f(x) = 2 {x}^{2}  - 3( {x}^{2}  - 2x + x - 2) \\  \\  \:  \sf \: f(x) = 2 {x}^{2}  - 3(x(x - 2)  + (x - 2)) \\  \\  \:  \sf \: f(x) = 2 {x}^{2}  - 3(x - 2)(x + 1)

 \:  \sf \therefore \: x - 2  \\  \sf \:  \: x = 2 \\  \\  \:   \sf \therefore \: x  + 1 \\    \sf \: x =  - 1

Hence,zeroes of the polynomial are 2 and -1.

_____________________________

Attachments:
Answered by Ishu995
15

\huge\mathfrak\red{Question}

Find all zeros of the polynomial f(x) = are 2x² - 2x³ - 7x² + 3x + 6, if it's two zeros are √-3/2 and √3/2.

\huge\mathfrak\red{Answer}

___________________

\begin{gathered} \: \sf \: f(x) = 2 {x}^{4} - 2 {x}^{3} - 7 {x}^{2} + 3x + 6 \\ \\ \sf - \sqrt{ \frac{3}{2} } and \sqrt{ \frac{3}{2} } are \: zeroes \: of \: f(x).\end{gathered}

Now find the factor of the zeroes which are given:

\sf \: factor = (x + \sqrt{ \frac{3}{2} } )(x - \sqrt{ \frac{3}{2} } )factor

Now multiply both terms

\: \sf \: = {x}^{2} - \frac{3}{2}=x

Now take LCM

\: \sf \: = \frac{2 {x}^{2} - 3 }{2}=

Now take common numbers

\: \sf \: = \frac{1}{2} (2 {x}^{2} - 3)

After dividing the term 2x⁴ - 2x³- 7x² + 3x + 6 from 2x² - 3 we got x² - x - 2.

Now put on f(x) value

\begin{gathered} \: \sf \: f(x) = 2 {x}^{2} - 3( {x}^{2} - x - 2) \\ \\ \: \sf \: f(x) = 2 {x}^{2} - 3( {x}^{2} - 2x + x - 2) \\ \\ \: \sf \: f(x) = 2 {x}^{2} - 3(x(x - 2) + (x - 2)) \\ \\ \: \sf \: f(x) = 2 {x}^{2} - 3(x - 2)(x + 1)\end{gathered}

\begin{gathered} \: \sf \: x - 2 \\ \sf \: \: x = 2 \\ \\ \: \sf  \: x + 1 \\ \sf \: x = - 1\end{gathered}

Hence,zeroes of the polynomial are 2 and -1.

_____________________________

Attachments:
Similar questions