Math, asked by valsalasn, 2 months ago

find all zeros of the polynomial x⁴ +x³ -14x² -2x +24 .if two of its zeroes are √2 and -√2 / by division method ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:f(x) =  {x}^{4} +  {x}^{3} -  {14x}^{2} - 2x + 24

Further given that,

\rm :\longmapsto\: -  \sqrt{2} \: and \:  \sqrt{2} \: are \: zeroes \: of \: f(x)

\rm :\longmapsto\:(x  +  \sqrt{2}) \: and \: (x -  \sqrt{2}) \: are \: factors \: of \: f(x)

\rm :\longmapsto\:(x  +  \sqrt{2})(x -  \sqrt{2}) \: is \: factors \: of \: f(x)

\rm :\longmapsto\: {x}^{2}  -  {( \sqrt{2})}^{2}  \: is \: factors \: of \: f(x)

\rm :\longmapsto\: {x}^{2}  -  2\: is \: factors \: of \: f(x)

So, by using long division, we have

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} + x - 2\:\:}}}\\ {\underline{\sf{ {x}^{2} - 2}}}& {\sf{\: {x}^{4} + {x}^{3} - {14x}^{2} - 2x + 24 \:\:}} \\{\sf{}}& \underline{\sf{-{x}^{4} \: \: \: \: \: \: \: \: + {2x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\: {x}^{3} - {12x}^{2} - 2x + 24  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:    - {x}^{3}  \: \: \: \: \: \: \: \:  +  \: 2x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \ -  {12x}^{2} + 24  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:    \:  + {12x}^{2}  -  24\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Now, we know that,

Dividend = Divisor × Quotient + Remainder

So,

\rm :\longmapsto\:{x}^{4} +  {x}^{3} -  {14x}^{2} - 2x + 24 = ( {x}^{2} - 2)( {x}^{2} + x - 2)

\rm \: \: =  \:  \: ( {x}^{2} - 2)( {x}^{2} + x - 2)

\rm \: \: =  \:  \: ( {x}^{2} - 2)( {x}^{2} + 2x - x - 2)

\rm \: \: =  \:  \: ( {x}^{2} - 2)( {x}(x + 2)- 1(x  +  2))

\rm \: \: =  \:  \: ( {x}^{2} - 2)(x + 2)(x - 1)

Hence,

  • Remaining zeroes are - 2 and 1.

Similar questions