Math, asked by sidharthrk8055, 3 months ago

Find alpha ^ - 1 + beta ^ - 1 , if a and are the zeroes of the polynomial a beta 2x ^ 2 - x + 5 .​

Answers

Answered by RudranshuMishra7
1

Polynomial Given : p(x) = 2x² - x + 5

a = 2 ; b = 1 ; c = 5

 \sf \alpha  +  \beta  =  \frac{ - b}{a} =     \pink{\bold{\frac{ - 1}{2}}} \\  \\  \sf \:  \alpha . \beta  =  \frac{c}{a}       = \pink{\bold{ 5}}

Now finding α^-1 + β^-1

 \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   { \alpha }^{ - 1}   + { \beta }^{ - 1}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  = \frac{1}{ \alpha   }   + \frac{1}{ \beta }  \\  \\ =   \frac{ \alpha  .\beta }{ \alpha  +   \beta }  \\  \\   \sf=  \frac{5}{ \frac{ - 1}{2} }  \\  \\    \boxed{\boxed{\green{\bold{  =  - 10}}}}

So the value of α^(-1) + β^(-1) = -10

Similar questions