Math, asked by starchase, 10 months ago

find altitude of a equilateral triangle whose side is 8 cm
please answer​

Answers

Answered by Anonymous
3

Answer:

by pytha goras theorom

ans is

4 \sqrt{3}  \:  \:  \: ans

mark brainliest

Answered by ishwarsinghdhaliwal
1

Answer:

4√3 cm

Step-by-step explanation:

Area  \: of  \: an \:  equilateral \:  triangle  =  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ \sqrt{3} }{4}  \times  {8}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{ \sqrt{3} }{4}  \times64 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 16 \sqrt{3}  \:  \:   cm ^{2}  \\ Area  \: of  \: triangle =  \frac{1}{2}   \times base \times altitude \\ 16 \sqrt{3}  =  \frac{1}{2}  \times 8\times altitude \\ 16 \sqrt{3}  =4 \times altitude \\ altitude =  \frac{16 \sqrt{3}}{4}  \\ altitude = 4 \sqrt{3}  \:  \: cm

Similar questions