Math, asked by laxmimahatocky123, 1 month ago

Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.​

Answers

Answered by kamalhajare543
21

Answer:

Thus,

\sf ◆S_n=3m^2\\ \\ \sf ◆ \: For  \: n =1, S_1=3×1^2=3\\ \\ \sf ◆\sf  \: For \:  N =2, S_2=3×2^2=12\\ \\ \sf ◆ \: For \:  N =3, S_3=3×3^3=27

And So on,

 \sf \: \therefore S_1=A_1=3 \\  \\  \sf \: ◆ \:  \: A_2=S_2-S_1=12-3=9\\ \\ \sf ◆ \:  \: A_3=S_3-S_2=27-12=15

And So On

Thus The AP is 3,9,27

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

  • An A.P. series in which the sum of any number of terms is always three times the squared number of these terms.

Let assume that

  • First term of an AP = a

  • Common difference of an AP = d

  • Number of terms = n

So, According to statement

\red{\rm :\longmapsto\:S_n = 3 {n}^{2} \: }

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, using this, we get

\rm :\longmapsto\:\dfrac{n}{2}\bigg[2a + (n - 1)d\bigg] =  {3n}^{2}

\rm :\longmapsto\:2a + (n - 1)d = 6n

\rm :\longmapsto\:2a + nd -d = 6n

\rm :\longmapsto\:(2a - d) + nd= 6n

So, on comparing, we get

\rm \implies\:\boxed{ \tt{ \: d \:  =  \: 6 \: }}

and

\rm :\longmapsto\:2a - d = 0

\rm :\longmapsto\:2a - 6 = 0

\rm :\longmapsto\:2a  = 6

\rm \implies\:\boxed{ \tt{ \: a \:  =  \: 3 \: }}

So, Required AP series is

\red{\rm :\longmapsto\:3, \: 9, \: 15, \: 21, -  -  - }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions