Math, asked by vedamshetti, 1 month ago

find an acute angle theta if cosec theta + sec theta / cosec theta - sec theta= root 3 + 1 / root 3 - 1​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ acute \: angle \:   \\ \\ so \: here \\  \\  \frac{cosec \: θ + sec \: θ}{cosec \: θ - sec \: θ}  =  \frac{ \sqrt{3}  + 1}{ \sqrt{3} - 1 }  \\  \\ applying \: now \:  \\ componendo \: dividendo \\ we \: get \\  \\  \frac{cosec \: θ + sec \:θ + cosec \: θ - sec \:θ  }{cosec \: θ + sec \: θ - (cosec \: θ - sec \:θ) }  =    \frac{ \sqrt{3}  + 1 +  \sqrt{3} - 1 }{ \sqrt{3} + 1 - ( \sqrt{3}  - 1) }  \\  \\  =  \frac{cosec \:θ  + cosec \: θ}{cosec \: θ + sec \: θ - cosec \:θ + sec \:  θ}  =  \frac{ \sqrt{3}  +  \sqrt{3} }{ \sqrt{ 3 }  + 1 -  \sqrt{ 3 }  + 1}  \\  \\  =  \frac{2.cosec \:θ }{2.sec \: θ}  =  \frac{2. \sqrt{3} }{2}  \\  \\  =  \frac{cosec \: θ}{sec \: θ}  =  \sqrt{3}  \\  \\ we \: know \: that \\  \\ cot \: θ =  \frac{cosec \:θ }{sec \:θ }  \\  \\ thus \: then \\  \\ cot \: θ =  \sqrt{3}  \\  \\ we \: have \\  \\ cot \: 30 =  \sqrt{3}   \\  \\ henceforth \\  \\ θ = 30

Similar questions