Math, asked by af97411, 4 months ago

Find an equivalent fraction for the decimal number. Be sure that your answer is in lowest terms. Enter the numerator into the first box and the denominator of the fraction into the box below.

0.6 = \frac{x}{y}

Answers

Answered by cathy01frany02
0

Answer:

y=1.666667x. x=0.6y

Step-by-step explanation:

Let's solve for x.

0.6=

x

y

Step 1: Multiply both sides by y.

0.6y=x

Step 2: Flip the equation.

x=0.6y

Let's solve for y.

0.6=

x

y

Step 1: Multiply both sides by y.

0.6y=x

Step 2: Divide both sides by 0.6.

0.6y

0.6

=

x

0.6

y=1.666667x

Answered by swagat87
0

Step-by-step explanation:

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions