Math, asked by alaa15ameen, 1 month ago

Find an implicit expression for the solution y of the IVP (6x^5 − xy) + (−x^2 +xy^2)y'=0
with initial condition y(0) = 1.

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

(6 {x}^{5}  - xy) + ( -  {x}^{2}  + x {y}^{2} )y^{ \prime}  = 0 \\

 \implies y^{ \prime} = \frac{ (xy - 6 {x}^{5} )} {( -  {x}^{2}  + x {y}^{2} ) }\\

 \implies  \frac{dy}{dx}  = \frac{ (y - 6 {x}^{4} )} {(    {y}^{2} - x ) }\\

 \implies {y}^{2} dy - xdy = ydx - 6 {x}^{4} dx \\

 \implies {y}^{2} dy   + 6 {x}^{4} dx = ydx + xdy \\

 \implies {y}^{2} dy   + 6 {x}^{4} dx = d(xy) \\

 \implies  \int{y}^{2} dy   +  \int6 {x}^{4} dx =  \int \: d(xy) \\

   \implies\frac{ {y}^{3} }{3}  + 6 \frac{ {x}^{5} }{5}  = xy + c \\

since y(0) =1, so c=1/3

   \implies\frac{ {y}^{3} }{3}  + \frac{ 6{x}^{5} }{5}  = xy +  \frac{1}{3}  \\

Similar questions